Breast Cancer: Proteolysis and Migration

  • Kingsley O. Osuala
  • Kyungmin Ji
  • Raymond R. Mattingly
  • Bonnie F. Sloane
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1152)


Understanding breast cancer cell proteolysis and migration is crucial for developing novel therapies to prevent local and distant metastases. Human cancer cells utilize many biological functions comparable to those observed during embryogenesis conferring the cancer cells with survival advantages. One such advantage is the ability to secrete proteases into the tumor microenvironment in order to remodel the extracellular matrix to facilitate migration. These proteases degrade the extracellular matrix, which initially functions as a barrier to cancer cell escape from their site of origin. The extracellular matrix also functions as a reservoir for growth factors that can be released by the secreted proteases and thereby further aid tumor growth and progression. Other survival advantages of tumor cells include: the ability to utilize multiple modes of motility, thrive in acidic microenvironments, and the tumor cell’s ability to hijack stromal and immune cells to foster their own migration and survival. In order to reduce metastasis, we must focus our efforts on addressing the survival advantages that tumor cells have acquired.


Proteolysis Tumor cell motility Modeling breast cancer Tumor microenvironment 3D cell culture Extracellular matrix Live-cell imaging Breast cancer 



We thank M. Sameni, C. Jedeszko and P. Lynch for the contribution of figures. We would like to thank laboratory members for their discussions and contributions to the development of 3D/4D cultures and co-cultures. This work was supported in part by R01 CA131990 (RRM and BFS) and R21 CA175931 (BFS) from the National Institutes of Health and Congressionally Directed Medical Research ProgramW81XWH-12-1-0024(KOO) from the Department of Defense. Imaging was performed in the Microscopy, Imaging and Cytometry Resources Core, which is supported, in part, by NIH Center grant P30 CA022453 to the Karmanos Cancer Institute at Wayne State University, and the Perinatology Research Branch of the National Institutes of Child Health and Development at Wayne State University.


  1. 1.
    Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proc Natl Acad Sci USA 109(36):14434–14439PubMedCrossRefGoogle Scholar
  2. 2.
    Berry DC, Stenesen D, Zeve D, Graff JM (2013) The developmental origins of adipose tissue. Development 140(19):3939–3949PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Boyd NF, Li Q, Melnichouk O, Huszti E, Martin LJ, Gunasekara A, Mawdsley G, Yaffe MJ, Minkin S (2014) Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS One 9(7):e100937PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bronner-Fraser M, Stern CD, Fraser S (1991) Analysis of neural crest cell lineage and migration. J Craniofac Genet Dev Biol 11(4):214–222PubMedGoogle Scholar
  5. 5.
    Carey SP, Rahman A, Kraning-Rush CM, Romero B, Somasegar S, Torre OM, Williams RM, Reinhart-King CA (2015) Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am J Physiol Cell Physiol 308(6):C436–C447PubMedCrossRefGoogle Scholar
  6. 6.
    Chalasani A, Ji K, Sameni M, Mazumder SH, Xu Y, Moin K, Sloane BF (2017) Live-cell imaging of protease activity: assays to screen therapeutic approaches. Methods Mol Biol 1574:215–225PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Coppack SW (2001) Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60(3):349–356CrossRefPubMedGoogle Scholar
  8. 8.
    Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A (2008) Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol 180(5):957–971PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295(5564):2387–2392PubMedCrossRefGoogle Scholar
  10. 10.
    Duivenvoorden HM, Rautela J, Edgington-Mitchell LE, Spurling A, Greening DW, Nowell CJ, Molloy TJ, Robbins E, Brockwell NK, Lee CS, Chen M, Holliday A, Selinger CI, Hu M, Britt KL, Stroud DA, Bogyo M, Moller A, Polyak K, Sloane BF, O’Toole SA, Parker BS (2017) Myoepithelial cell-specific expression of stefin A as a suppressor of early breast cancer invasion. J Pathol 243(4):496–509PubMedCrossRefGoogle Scholar
  11. 11.
    Fang M, Yuan J, Peng C, Li Y (2014) Collagen as a double-edged sword in tumor progression. Tumour Biol 35(4):2871–2882PubMedCrossRefGoogle Scholar
  12. 12.
    Fridman R (2017) Preface – matrix metalloproteinases. Biochim Biophys Acta 1864(11 Pt A):1925–1926CrossRefGoogle Scholar
  13. 13.
    Friedl P, Sahai E, Weiss S, Yamada KM (2012) New dimensions in cell migration. Nat Rev Mol Cell Biol 13(11):743–747PubMedCrossRefGoogle Scholar
  14. 14.
    Friedl P, Wolf K (2009) Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev 28(1–2):129–135PubMedCrossRefGoogle Scholar
  15. 15.
    Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9(12):1392–1400PubMedCrossRefGoogle Scholar
  17. 17.
    Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ (2005) Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia 10(3):261–272PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115(Pt 1):39–50PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gutierrez-Fernandez A, Fueyo A, Folgueras AR, Garabaya C, Pennington CJ, Pilgrim S, Edwards DR, Holliday DL, Jones JL, Span PN, Sweep FC, Puente XS, Lopez-Otin C (2008) Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 68(8):2755–2763PubMedCrossRefGoogle Scholar
  20. 20.
    Hillebrand LE, Bengsch F, Hochrein J, Hulsdunker J, Bender J, Follo M, Busch H, Boerries M, Reinheckel T (2016) Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer. Oncotarget 7(36):58244–58260PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Indra I, Beningo KA (2011) An in vitro correlation of metastatic capacity, substrate rigidity, and ECM composition. J Cell Biochem 112(11):3151–3158PubMedCrossRefGoogle Scholar
  22. 22.
    Iyengar P, Combs TP, Shah SJ, Gouon-Evans V, Pollard JW, Albanese C, Flanagan L, Tenniswood MP, Guha C, Lisanti MP, Pestell RG, Scherer PE (2003) Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22(41):6408–6423PubMedCrossRefGoogle Scholar
  23. 23.
    Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kimbung S, Loman N, Hedenfalk I (2015) Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol 35:85–95PubMedCrossRefGoogle Scholar
  25. 25.
    Kumar S, Kulkarni R, Sen S (2016) Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering. Phys Biol 13(3):036001PubMedCrossRefGoogle Scholar
  26. 26.
    Kurosaka S, Kashina A (2008) Cell biology of embryonic migration. Birth Defects Res C Embryo Today 84(2):102–122PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Li J, Jia Z, Kong J, Zhang F, Fang S, Li X, Li W, Yang X, Luo Y, Lin B, Liu T (2016) Carcinoma-associated fibroblasts lead the invasion of salivary gland adenoid cystic carcinoma cells by creating an invasive track. PLoS One 11(3):e0150247PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):a005058PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mathew H, Castracane VD, Mantzoros C (2017) Adipose tissue and reproductive health. Metabolism 86:18–32. pii: S0026-0495(0017)30309-30308PubMedCrossRefGoogle Scholar
  31. 31.
    Moin K, Sameni M, Victor BC, Rothberg JM, Mattingly RR, Sloane BF (2012) 3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment. Methods Enzymol 506:175–194PubMedCrossRefGoogle Scholar
  32. 32.
    Mu W, Rana S, Zoller M (2013) Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia 15(8):875–887PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nandadasa S, Foulcer S, Apte SS (2014) The multiple, complex roles of versican and its proteolytic turnover by ADAMTS proteases during embryogenesis. Matrix Biol 35:34–41PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Neurath H, Walsh KA (1976) Role of proteolytic enzymes in biological regulation (a review). Proc Natl Acad Sci USA 73(11):3825–3832PubMedCrossRefGoogle Scholar
  36. 36.
    Nguyen-Ngoc KV, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC, Yaswen P, Werb Z, Ewald AJ (2012) ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci USA 109(39):E2595–E2604PubMedCrossRefGoogle Scholar
  37. 37.
    Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15(12):712–729CrossRefPubMedGoogle Scholar
  38. 38.
    Osuala KO, Sameni M, Shah S, Aggarwal N, Simonait ML, Franco OE, Hong Y, Hayward SW, Behbod F, Mattingly RR, Sloane BF (2015) Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer 15:584PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Packard BZ, Artym VV, Komoriya A, Yamada KM (2009) Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol 28(1):3–10PubMedCrossRefGoogle Scholar
  40. 40.
    Pal A, Donato NJ (2014) Ubiquitin-specific proteases as therapeutic targets for the treatment of breast cancer. Breast Cancer Res 16(5):461PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Perez-Silva JG, Espanol Y, Velasco G, Quesada V (2016) The Degradome database: expanding roles of mammalian proteases in life and disease. Nucleic Acids Res 44(D1):D351–D355PubMedCrossRefGoogle Scholar
  42. 42.
    Perrin BJ, Amann KJ, Huttenlocher A (2006) Proteolysis of cortactin by calpain regulates membrane protrusion during cell migration. Mol Biol Cell 17(1):239–250PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Petrie RJ, Yamada KM (2012) At the leading edge of three-dimensional cell migration. J Cell Sci 125(Pt 24):5917–5926PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Radisky ES, Radisky DC (2015) Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed) 20:1144–1163CrossRefGoogle Scholar
  45. 45.
    Radisky ES, Raeeszadeh-Sarmazdeh M, Radisky DC (2017) Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J Cell Biochem 118(11):3531–3548PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rejon C, Al-Masri M, McCaffrey L (2016) Cell polarity proteins in breast cancer progression. J Cell Biochem 117(10):2215–2223PubMedCrossRefGoogle Scholar
  47. 47.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302(5651):1704–1709CrossRefPubMedGoogle Scholar
  48. 48.
    Ristic G, Tsou WL, Todi SV (2014) An optimal ubiquitin-proteasome pathway in the nervous system: the role of deubiquitinating enzymes. Front Mol Neurosci 7:72PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E, Moin K, Blum G, Mattingly RR, Gillies RJ, Sloane BF (2013) Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15(10):1125–1137PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rothenberg ML, Nelson AR, Hande KR (1999) New drugs on the horizon: matrix metalloproteinase inhibitors. Stem Cells 17(4):237–240PubMedCrossRefGoogle Scholar
  51. 51.
    Roy DM, Walsh LA (2014) Candidate prognostic markers in breast cancer: focus on extracellular proteases and their inhibitors. In: Breast cancer, vol 6. Dove Med Press, pp 81–91Google Scholar
  52. 52.
    Sakamoto T, Seiki M (2017) Integrated functions of membrane-type 1 matrix metalloproteinase in regulating cancer malignancy: beyond a proteinase. Cancer Sci 108(6):1095–1100PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sameni M, Anbalagan A, Olive MB, Moin K, Mattingly RR, Sloane BF (2012) MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression. J Vis Exp (60):3661Google Scholar
  54. 54.
    Sameni M, Cavallo-Medved D, Dosescu J, Jedeszko C, Moin K, Mullins SR, Olive MB, Rudy D, Sloane BF (2009) Imaging and quantifying the dynamics of tumor-associated proteolysis. Clin Exp Metastasis 26(4):299–309PubMedCrossRefGoogle Scholar
  55. 55.
    Sameni M, Cavallo-Medved D, Franco OE, Chalasani A, Ji K, Aggarwal N, Anbalagan A, Chen X, Mattingly RR, Hayward SW, Sloane BF (2017) Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Res 19(1):56PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sarper M, Allen MD, Gomm J, Haywood L, Decock J, Thirkettle S, Ustaoglu A, Sarker SJ, Marshall J, Edwards DR, Jones JL (2017) Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res 19(1):33PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30CrossRefPubMedGoogle Scholar
  58. 58.
    Sikandar SS, Kuo AH, Kalisky T, Cai S, Zabala M, Hsieh RW, Lobo NA, Scheeren FA, Sim S, Qian D, Dirbas FM, Somlo G, Quake SR, Clarke MF (2017) Role of epithelial to mesenchymal transition associated genes in mammary gland regeneration and breast tumorigenesis. Nat Commun 8(1):1669PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sloane BF, K L, Fingleton B, Matrisian L (2013) Proteases in cancer: significance for invasion and metastasis. In: Stöcker W, Brix K (eds) Proteases: structure and function. Springer, Vienna. Springer, ViennaGoogle Scholar
  60. 60.
    Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH (1997) The human myoepithelial cell is a natural tumor suppressor. Clin Cancer Res 3(11):1949–1958PubMedGoogle Scholar
  61. 61.
    Weaver VM, Fischer AH, Peterson OW, Bissell MJ (1996) The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem Cell Biol 74(6):833–851PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Witzel I, Oliveira-Ferrer L, Pantel K, Muller V, Wikman H (2016) Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res 18(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201(7):1069–1084PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Xu Y, Bismar TA, Su J, Xu B, Kristiansen G, Varga Z, Teng L, Ingber DE, Mammoto A, Kumar R, Alaoui-Jamali MA (2010) Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 207(11):2421–2437PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3(2):a004911PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119(6):1429–1437PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kingsley O. Osuala
    • 1
  • Kyungmin Ji
    • 1
  • Raymond R. Mattingly
    • 1
  • Bonnie F. Sloane
    • 1
  1. 1.Department of Pharmacology and Barbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitUSA

Personalised recommendations