Advertisement

Role of mTORC1 and mTORC2 in Breast Cancer: Therapeutic Targeting of mTOR and Its Partners to Overcome Metastasis and Drug Resistance

  • Ghazala ButtEmail author
  • Durray Shahwar
  • Muhammad Zahid Qureshi
  • Rukset Attar
  • Misbah Akram
  • Yelda Birinci
  • Gokce Seker Karatoprak
  • Maria Luisa Gasparri
  • Ammad Ahmad Farooqi
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1152)

Abstract

Based on the insights gleaned from decades of research, it seems clear that mechanistic target of rapamycin (mTOR) is an essential signaling node that integrates environmental clues for regulation of cell survival, metabolism and proliferation of the cells. However, overwhelmingly increasing scientific evidence has added a new layer of intricacy to already complicated and versatile signaling pathway of mTOR. Deregulation of spatio-temporally controlled mTOR-driven pathway played contributory role in breast cancer development and progression. Pharmacologists and molecular biologists have specifically emphasized on the identification and development of mTOR-pathway inhibitors. In this chapter we have attempted to provide an overview of the most recent findings related to therapeutic targeting of mTOR-associated mTORC1 and mTORC2 in breast cancer. We have also comprehensively summarized regulation of mTOR and its partners by microRNAs in breast cancer.

Keywords

mTOR Signaling Therapy Apoptosis 

References

  1. 1.
    Alayev A, Salamon RS, Berger SM, Schwartz NS, Cuesta R, Snyder RB, Holz MK (2016) mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene 35(27):3535–3543.  https://doi.org/10.1038/onc.2015.414CrossRefPubMedGoogle Scholar
  2. 2.
    Balakrishnan S, Mukherjee S, Das S, Bhat FA, Raja Singh P, Patra CR, Arunakaran J (2017) Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct 35(4):217–231.  https://doi.org/10.1002/cbf.3266CrossRefPubMedGoogle Scholar
  3. 3.
    Blanco E, Sangai T, Wu S, Hsiao A, Ruiz-Esparza GU, Gonzalez-Delgado CA et al (2014) Colocalized delivery of rapamycin and paclitaxel to tumors enhances synergistic targeting of the PI3K/Akt/mTOR pathway. Mol Ther 22(7):1310–1319CrossRefGoogle Scholar
  4. 4.
    Chen J, Zhu Y, Zhang W, Peng X, Zhou J, Li F, Han B, Liu X, Ou Y, Yu X (2018) Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK pathway activation in HER-2 positive breast cancer cells. BMC Cancer 18(1):342.  https://doi.org/10.1186/s12885-018-4231-yCrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Guru SK, Pathania AS, Kumar S, Ramesh D, Kumar M, Rana S, Kumar A, Malik F, Sharma PR, Chandan BK, Jaglan S, Sharma JP, Shah BA, Tasduq SA, Lattoo SK, Faruk A, Saxena AK, Vishwakarma RA, Bhushan S (2015) Secalonic acid-D represses HIF1α/VEGF-mediated angiogenesis by regulating the Akt/mTOR/p70S6K signaling cascade. Cancer Res 75(14):2886–2896.  https://doi.org/10.1158/0008-5472.CAN-14-2312CrossRefPubMedGoogle Scholar
  6. 6.
    Jung CH, Kim H, Ahn J, Jung SK, Um MY, Son KH, Kim TW, Ha TY (2013) Anthricin isolated from Anthriscus sylvestris (L.) Hoffm. Inhibits the growth of breast cancer cells by inhibiting Akt/mTOR signaling, and its apoptotic effects are enhanced by autophagy inhibition. Evid Based Complement Alternat Med 2013:385219.  https://doi.org/10.1155/2013/385219CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ke K, Lou T (2017) MicroRNA-10a suppresses breast cancer progression via PI3K/Akt/mTOR pathway. Oncol Lett 14(5):5994–6000.  https://doi.org/10.3892/ol.2017.6930.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li W, Wang H, Zhang J, Zhai L, Chen W, Zhao C (2016a) miR-199a-5p regulates β1 integrin through Ets-1 to suppress invasion in breast cancer. Cancer Sci 107(7):916–923.  https://doi.org/10.1111/cas.12952CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li W, Zhai L, Wang H, Liu C, Zhang J, Chen W, Wei Q (2016b) Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7(19):27778–27786.  https://doi.org/10.18632/oncotarget.8413CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lineham E, Tizzard GJ, Coles SJ, Spencer J, Morley SJ (2018) Synergistic effects of inhibiting the MNK-eIF4E and PI3K/AKT/ mTOR pathways on cell migration in MDA-MB-231 cells. Oncotarget 9(18):14148–14159.  https://doi.org/10.18632/oncotarget.24354CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lu W, Lin C, Li Y (2014) Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal 26(6):1303–1309.  https://doi.org/10.1016/j.cellsig.2014.02.018CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Makhov P, Golovine K, Teper E, Kutikov A, Mehrazin R, Corcoran A, Tulin A, Uzzo RG, Kolenko VM (2014) Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer 110(4):899–907.  https://doi.org/10.1038/bjc.2013.810CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Martin EC, Rhodes LV, Elliott S, Krebs AE, Nephew KP, Flemington EK, Collins-Burow BM, Burow ME (2014) microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity. Mol Cancer 13:229.  https://doi.org/10.1186/1476-4598-13-229CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mateo F, Arenas EJ, Aguilar H, Serra-Musach J, de Garibay GR, Boni J, Maicas M, Du S, Iorio F, Herranz-Ors C, Islam A, Prado X, Llorente A, Petit A, Vidal A, Català I, Soler T, Venturas G, Rojo-Sebastian A, Serra H, Cuadras D, Blanco I, Lozano J, Canals F, Sieuwerts AM, de Weerd V, Look MP, Puertas S, García N, Perkins AS, Bonifaci N, Skowron M, Gómez-Baldó L et al (2017) Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition. Oncogene 36(19):2737–2749.  https://doi.org/10.1038/onc.2016.427CrossRefPubMedGoogle Scholar
  15. 15.
    Mi W, Ye Q, Liu S, She QB (2015) AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis. Oncotarget 6(16):13962–13977CrossRefGoogle Scholar
  16. 16.
    Michaloglou C, Crafter C, Siersbæk R, Delpuech O, Curwen JO, Carnevalli LS, Staniszewska AD, Polanska UM, Cheraghchi-Bashi A, Lawson M, Chernukhin I, McEwen R, Carroll JS, Cosulich SC (2018. pii: molcanther.0537.2017) Combined inhibition of mTOR and CDK4/6 is required for optimal blockade of E2F function and long term growth inhibition in estrogen receptor positive breast cancer. Mol Cancer Ther.  https://doi.org/10.1158/1535-7163.MCT-17-0537CrossRefGoogle Scholar
  17. 17.
    Morrison Joly M, Hicks DJ, Jones B, Sanchez V, Estrada MV, Young C, Williams M, Rexer BN, Sarbassov dos D, Muller WJ, Brantley-Sieders D, Cook RS (2016) Rictor/mTORC2 drives progression and therapeutic resistance of HER2-amplified breast cancers. Cancer Res 76(16):4752–4764.  https://doi.org/10.1158/0008-5472.CAN-15-3393CrossRefPubMedGoogle Scholar
  18. 18.
    Morrison Joly M, Williams MM, Hicks DJ, Jones B, Sanchez V, Young CD, Sarbassov DD, Muller WJ, Brantley-Sieders D, Cook RS (2017) Two distinct mTORC2-dependent pathways converge on Rac1 to drive breast cancer metastasis. Breast Cancer Res 19(1):74.  https://doi.org/10.1186/s13058-017-0868-8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Parhi P, Sahoo SK (2015) Trastuzumab guided nanotheranostics: a lipid based multifunctional nanoformulation for targeted drug delivery and imaging in breast cancer therapy. J Colloid Interface Sci 451:198–211CrossRefGoogle Scholar
  20. 20.
    Phua YW, Nguyen A, Roden DL, Elsworth B, Deng N, Nikolic I, Yang J, Mcfarland A, Russell R, Kaplan W, Cowley MJ, Nair R, Zotenko E, O’Toole S, Tan SX, James DE, Clark SJ, Kouros-Mehr H, Swarbrick A (2015) MicroRNA profiling of the pubertal mouse mammary gland identifies miR-184 as a candidate breast tumour suppressor gene. Breast Cancer Res 17:83.  https://doi.org/10.1186/s13058-015-0593-0CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Polchi A, Magini A, Mazuryk J, Tancini B, Gapinski J, Patkowski A et al (2016) Rapamycin loaded solid lipid nanoparticles as a new tool to deliver mTOR inhibitors: formulation and in vitro characterization. Nanomaterials (Basel) 6(5):87CrossRefGoogle Scholar
  22. 22.
    Wang Y, Han E, Xing Q, Yan J, Arrington A, Wang C, Tully D, Kowolik CM, Lu DM, Frankel PH, Zhai J, Wen W, Horne D, Yip MLR, Yim JH (2015) Baicalein upregulates DDIT4 expression which mediates mTOR inhibition and growth inhibition in cancer cells. Cancer Lett 358(2):170–179.  https://doi.org/10.1016/j.canlet.2014.12.033CrossRefPubMedGoogle Scholar
  23. 23.
    Wang J, Wang Y, Liu Q, Yang L, Zhu R, Yu C, Wang S (2016) Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl Mater Interfaces 8(40):26511–26523CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Xu S, Lin J, Yao G, Han Z, Liang B, Zou Z, Chen Z, Song Q, Dai Y, Gao T, Liu A, Bai X (2012) mTORC1 is a target of nordihydroguaiaretic acid to prevent breast tumor growth in vitro and in vivo. Breast Cancer Res Treat 136(2):379–388.  https://doi.org/10.1007/s10549-012-2270-7CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Y, Zhang HE, Liu Z (2016) MicroRNA-147 suppresses proliferation, invasion and migration through the AKT/mTOR signaling pathway in breast cancer. Oncol Lett 11(1):405–410CrossRefGoogle Scholar
  26. 26.
    Zhou X, Yue GG, Chan AM, Tsui SK, Fung KP, Sun H, Pu J, Lau CB (2017a) Eriocalyxin B, a novel autophagy inducer, exerts anti-tumor activity through the suppression of Akt/mTOR/p70S6K signaling pathway in breast cancer. Biochem Pharmacol 142:58–70.  https://doi.org/10.1016/j.bcp.2017.06.133CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou R, Chen H, Chen J, Chen X, Wen Y, Xu L (2018) Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement Altern Med 18(1):83.  https://doi.org/10.1186/s12906-018-2148-2CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ghazala Butt
    • 1
    Email author
  • Durray Shahwar
    • 2
  • Muhammad Zahid Qureshi
    • 3
  • Rukset Attar
    • 4
  • Misbah Akram
    • 5
  • Yelda Birinci
    • 6
  • Gokce Seker Karatoprak
    • 7
  • Maria Luisa Gasparri
    • 8
    • 9
    • 10
  • Ammad Ahmad Farooqi
    • 11
  1. 1.Department of BotanyGCULahorePakistan
  2. 2.Lahore College for Women UniversityLahorePakistan
  3. 3.Department of ChemistryGCULahorePakistan
  4. 4.Department of Obstetrics and Gynecology, Faculty of MedicineYeditepe UniversityIstanbulTurkey
  5. 5.Department of Bioinformatics and BiotechnologyInternational Islamic UniversityIslamabadPakistan
  6. 6.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  7. 7.Department of Pharmacognosy, Faculty of PharmacyErciyes UniversityKayseriTurkey
  8. 8.Department of Gynecology and ObstetricsUniversity Hospital of Bern and University of BernBernSwitzerland
  9. 9.Department of Gynecology and Obstetrics“Sapienza” University of RomeRomeItaly
  10. 10.Surgical and Medical Department of Translational Medicine“Sapienza” University of RomeRomeItaly
  11. 11.Laboratory for Translational Oncology and Personalized MedicineRLMCLahorePakistan

Personalised recommendations