Advertisement

Plasma Crystallization and Phase Transitions

  • André Melzer
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 962)

Abstract

After identifying the basic mechanisms of charging, trapping and interaction of dust particles in a discharge, we now investigate the many-particle interaction of the dust in view of crystallization and phase transitions of the dust ensemble. One of the fascinating properties of dusty plasmas is that the dust particles can arrange in highly ordered systems and that a transition to unordered situations is found. Thus, dusty plasmas can serve as models for condensed matter systems. Now, here, it is discussed how the ordering of a dust particle ensemble can be characterized, especially for situations in two dimensions.

References

  1. 1.
    E. Wigner, Trans. Faraday Soc. 34, 678 (1938)CrossRefGoogle Scholar
  2. 2.
    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    C. Kittel, Introduction to Solid State Physics, 6th edn. (Wiley, New York, 1986)zbMATHGoogle Scholar
  4. 4.
    D.A. Baiko, A.Y. Potekhin, D.G. Yakovlev, Phys. Rev. E 64, 057402 (2001). https://link.aps.org/doi/10.1103/PhysRevE.64.057402 ADSCrossRefGoogle Scholar
  5. 5.
    M.O. Robbins, K. Kremer, G.S. Grest, J. Chem. Phys. 88, 3286 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    S. Hamaguchi, R. Farouki, D.H.E. Dubin, Phys. Rev. E 56, 4671 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    H. Ikezi, Phys. Fluids 29, 1764 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    I. Waki, S. Kassner, G. Birkl, H. Walther, Phys. Rev. Lett. 68, 2007 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    A. Mortensen, E. Nielsen, T. Matthey, M. Drewsen, Phys. Rev. Lett. 96, 103001 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    D. Dubin, Phys. Rev. Lett. 71, 2753 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    H. Totsuji, T. Kishimoto, Y. Inoue, C. Totsuji, S. Nara, Phys. Lett. A 221, 215 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    H. Totsuji, T. Kishimoto, C. Totsuji, Phys. Rev. Lett. 78, 3113 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    N. Desbiens, P. Arnault, J. Clérouin, Phys. Plasmas 23, 092120 (2016). https://doi.org/10.1063/1.4963388 ADSCrossRefGoogle Scholar
  14. 14.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C Solid St. Phys. 6, 1181 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    K. Strandburg, Rev. Mod. Phys. 60, 161 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    R.A. Quinn, C. Cui, J. Goree, J.B. Pieper, H. Thomas, G.E. Morfill, Phys. Rev. E 53, 2049 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    A. Melzer, A. Homann, A. Piel, Phys. Rev. E 53, 2757 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    V. Nosenko, S.K. Zhdanov, A.V. Ivlev, C.A. Knapek, G.E. Morfill, Phys. Rev. Lett. 103, 015001 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    W.Y. Woon, L. I, Phys. Rev. Lett. 92, 065003 (2004)Google Scholar
  20. 20.
    B. Klumov, P. Huber, S. Vladimirov, H. Thomas, A. Ivlev, G. Morfill, V. Fortov, A. Lipaev, V. Molotkov, Plasma Phys. Control. Fusion 51, 124028 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Khrapak, B.A. Klumov, P. Huber, V.I. Molotkov, A.M. Lipaev, V.N. Naumkin, A.V. Ivlev, H.M. Thomas, M. Schwabe, G.E. Morfill, O.F. Petrov, V.E. Fortov, Y. Malentschenko, S. Volkov, Phys. Rev. E 85, 066407 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    V.N. Naumkin, D.I. Zhukhovitskii, V.I. Molotkov, A.M. Lipaev, V.E. Fortov, H.M. Thomas, P. Huber, G.E. Morfill, Phys. Rev. E 94, 033204 (2016). http://link.aps.org/doi/10.1103/PhysRevE.94.033204 ADSCrossRefGoogle Scholar
  23. 23.
    B. Steinmüller, C. Dietz, M. Kretschmer, M.H. Thoma, Phys. Rev. E 97, 053202 (2018). https://link.aps.org/doi/10.1103/PhysRevE.97.053202 ADSCrossRefGoogle Scholar
  24. 24.
    J.H. Chu, I. Lin, Phys. Rev. Lett. 72, 4009 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Hayashi, K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    G.H.P.M. Swinkels, H. Kersten, H. Deutsch, G.M.W. Kroesen, J. Appl. Phys. 88, 1747 (2000). https://doi.org/10.1063/1.1302993 ADSCrossRefGoogle Scholar
  28. 28.
    H.R. Maurer, H. Kersten, J. Phys. D Appl. Phys. 44, 174029 (2011). http://stacks.iop.org/0022-3727/44/i=17/a=174029 ADSCrossRefGoogle Scholar
  29. 29.
    C. Killer, M. Mulsow, A. Melzer, Plasma Sources Sci. Technol. 24, 025029 (2015). http://stacks.iop.org/0963-0252/24/i=2/a=025029 ADSCrossRefGoogle Scholar
  30. 30.
    B. Liu, J. Goree, Y. Feng, Phys. Rev. E 78, 046403 (2008). https://link.aps.org/doi/10.1103/PhysRevE.78.046403 ADSCrossRefGoogle Scholar
  31. 31.
    H. Thomas, G.E. Morfill, Nature 379, 806 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    A. Ivlev, U. Konopka, G. Morfill, G. Joyce, Phys. Rev. E 68, 026405 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    A. Ivlev, G. Morfill, Phys. Rev. E 63, 016409 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    S.K. Zhdanov, A.V. Ivlev, G.E. Morfill, Phys. Plasmas 16, 083706 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    B. Liu, J. Goree, Y. Feng, Phys. Rev. Lett. 105, 085004 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    L. Couëdel, V. Nosenko, A.V. Ivlev, S.K. Zhdanov, H.M. Thomas, G.E. Morfill, Phys. Rev. Lett. 104, 195001 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    A. Melzer, Phys. Rev. E 90, 053103 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    V.A. Schweigert, I.V. Schweigert, A. Melzer, A. Homann, A. Piel, Phys. Rev. Lett. 80, 5345 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    F. Melandsø, Phys. Rev. E 55, 7495 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    I.V. Schweigert, V.A. Schweigert, A. Melzer, A. Piel, Phys. Rev. E 62, 1238 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • André Melzer
    • 1
  1. 1.Institut für PhysikUniversität GreifswaldGreifswaldGermany

Personalised recommendations