Fabrication and Characterization of GaN/AlN Resonant Tunneling Diodes

  • W. D. Zhang
  • T. A. Growden
  • E. R. BrownEmail author
  • P. R. Berger
  • D. F. Storm
  • D. J. Meyer


This chapter reviews our recent efforts on growth, fabrication, and characterization of GaN/AlN resonant tunneling diodes (RTDs). Working GaN/AlN RTDs were successfully demonstrated, and they could function well under the flux of very high current densities (e.g., ∼431 kA/cm2) without thermal breakdown. The high-speed nature of these devices was confirmed through switching experiments, achieving a 10–90% switching time of ≈55 ps. A fmax calculation shows a small-signal oscillation with frequency up to 164 GHz is possible. Unlike InGaAs/AlAs RTDs, the peak-to-valley current ratios (PVCRs) of GaN/AlN RTDs remain ∼1.5. Through computer modeling, temperature measurements, and material diagnosis, we reveal that there could be stronger inelastic scattering processes contributing to the valley current other than the coherent tunneling in the GaN/AlN RTDs. The possible inelastic mechanisms include optical phonons, interface roughness, and dislocations. Thus, the growth of high-quality GaN/AlN heterostructures and the evolution of bulk GaN substrates are critical for getting better performance devices. Finally, unipolar electroluminescence, without the presence of p-type doping, was observed in GaN/AlN RTDs. The interband tunneling process, which generates holes for the optical recombination, is likely due to the strong electric fields originating from the polarization effects native to wurtzite heterostructures.


GaN/AlN heterostructure Bulk Ga-polar GaN substrate Resonant tunneling Resonant tunneling diode (RTD) Negative differential resistance (NDR) Peak-to-valley current ratio (PVCR) Switching time High-speed Interband tunneling Zener tunneling Polarization field Cross-band recombination Unipolar Electroluminescence Near-UV emission InGaAs/AlAs RTD Co-tunneling Temperature dependence Current density 



All these works were performed under the sponsorship of a Multi-University Research Initiative (MURI), “Devices and Architectures for THz Electronics (DATE),” managed by Dr. Paul Maki, and the NRL Base program, and have been either published in the literature, dissertations, or under preparation for near-term publications. We also acknowledge the National Science Foundation (Dr. Dimitris Pavlidis) for support under Grants #1711733 & #1711738, and we thank Dr. Ravi Droopad for providing the InGaAs/AlAs RTD structures used as a benchmark for this work.


  1. 1.
    Tsu, L. Esaki, Appl. Phys. Lett. 22, 562 (1973)Google Scholar
  2. 2.
    L.L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974)Google Scholar
  3. 3.
    E.R. Brown, J.R. Soderstrom, C.D. Parker, L.J. Mahoney, K.M. Molvar, T.C. McGill, Appl. Phys. Lett. 58, 2291 (1991)CrossRefGoogle Scholar
  4. 4.
    M. Feiginov, C. Sydlo, O. Cojocari, P. Meissner, Appl. Phys. Lett. 99, 233506 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Feiginov, H. Kanaya, S. Suzuki, M. Asada, Appl. Phys. Lett. 104(1–4), 243509 (2014)CrossRefGoogle Scholar
  6. 6.
    T. Maekawa, H. Kanaya, S. Suzuki, M. Asada, Electron. Lett. 50(17), 1214–1216 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Kitagawa, S. Suzuki, M. Asada, IEEE Electron Dev Lett 35, 1215–1217 (2014)CrossRefGoogle Scholar
  8. 8.
    T.A. Growden, D.F. Storm, W. Zhang, E.R. Brown, D.J. Meyer, P. Fakhimi, P.R. Berger, Appl. Phys. Lett. 109, 083504 (2016)CrossRefGoogle Scholar
  9. 9.
    T.A. Growden, Ph.D. Dissertation (The Ohio State University, 2016)Google Scholar
  10. 10.
    T.A. Growden, W.-D. Zhang, E.R. Brown, D.F. Storm, K. Hansen, P. Fakhimi, D.J. Meyer, P.R. Berger, Appl Phys Lett 112, 033508 (2018)CrossRefGoogle Scholar
  11. 11.
    D.F. Storm, T.A. Growden, W. Zhang, E.R. Brown, N. Nepal, D.S. Katzer, M.T. Hardy, P.R. Berger, D.J. Meyer, J Vac Sci Tech B 35(2), 02B110 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Kikuchi, R. Bannai, K. Kishino, C.M. Lee, J.I. Chyi, Appl. Phys. Lett. 81, 1729 (2002)CrossRefGoogle Scholar
  13. 13.
    K. Kishino, A. Kikuchi, Phys. Status Solidi 190(a), 23 (2002)CrossRefGoogle Scholar
  14. 14.
    S.N. Grinyaev, A.N. Razzhuvalov, Semiconductors 37, 450 (2003)Google Scholar
  15. 15.
    C.T. Foxon, S.V. Novikov, A.E. Belyaev, L.X. Zhao, O. Makarovsky, D.J. Walker, L. Eaves, R.I. Dykeman, S.V. Danylyuk, S.A. Vitusevich, M.J. Kappers, J.S. Barnard, C.J. Humphreys, Phys. Status Solidi a 7, 2389 (2003)CrossRefGoogle Scholar
  16. 16.
    M. Hermann, E. Monroy, A. Helman, B. Baur, M. Albrecht, B. Daudin, O. Ambacher, M. Stutzmann, M. Eickhoff, Phys Stat Sol 8, 2210 (2004)Google Scholar
  17. 17.
    S. Golka, C. Pflugl, W. Schrenk, G. Strasser, Appl. Phys. Lett. 88, 172106 (2006)CrossRefGoogle Scholar
  18. 18.
    C. Bayram, Z. Vashaei, M. Razeghi, Appl. Phys. Lett. 96, 042103 (2010)CrossRefGoogle Scholar
  19. 19.
    Z. Vashaei, C. Bayram, M. Razeghi, Appl. Phys. Lett. 107, 0835053 (2010)Google Scholar
  20. 20.
    L. Yang, H. He, W. Mao, Y. Hao, Appl. Phys. Lett. 99, 153501 (2011)CrossRefGoogle Scholar
  21. 21.
    T. A. Growden, S. Krishnamoorthy, D.N. Nath, A. Ramesh, S. Rajan, and P.R. Berger, in Proceedings of Device Research Conference (University Park, 2012), pp. 163–164Google Scholar
  22. 22.
    D. Li, L. Tang, C. Edmunds, J. Shao, G. Gardner, M.J. Manfra, O. Malis, Appl. Phys. Lett. 100, 252105 (2012)CrossRefGoogle Scholar
  23. 23.
    D. Li, J. Shao, L. Tang, C. Edmunds, G. Gardner, M.J. Manfra, O. Malis, Semicon Sci Tech 28, 074024 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Grier, A. Valavanis, C. Edmunds, J. Shao, J.D. Cooper, G. Gardner, M.J. Manfra, O. Malis, D. Indjin, Z. Ikonic, P. Harrison, Appl. Phys. Lett. 118, 224308 (2015)Google Scholar
  25. 25.
    T.A. Growden, E.R. Brown, W.-D. Zhang, R. Droopad, P.R. Berger, Appl. Phys. Lett. 107, 153506 (2015)CrossRefGoogle Scholar
  26. 26.
    T.A. Growden, W. Zhang, E.R. Brown, D.F. Storm, D.J. Meyer, P.R. Berger, N. Light, Sci Appl 7, 17150 (2018)Google Scholar
  27. 27.
    E. R. Brown, W-D. Zhang, T. A. Growden, D. F. Storm, D. J. Meyer, and P. R. Berger, Noise Measurements of High-Speed, Light-Emitting GaN Resonant-Tunneling Diodes, (2018). Google Scholar
  28. 28.
    E. R. Brown, W-D. Zhang, T. A. Growden, P. R. Berger, R. Droopad, (2018).,
  29. 29.
    D.F. Storm, D.A. Deen, D.S. Katzer, D.J. Meyer, S.C. Binari, T. Gougousi, T. Paskova, E.A. Preble, K.R. Evans, D.J. Smith, J. Cryst. Growth 380, 14–17 (2013)CrossRefGoogle Scholar
  30. 30.
    Silvaco ATLAS. (2016).
  31. 31.
    B.K. Ridley, B.E. Foutz, L.F. Eastman, Phys. Rev. B 61, 16862 (2000)CrossRefGoogle Scholar
  32. 32.
    T.P.E. Broekaert, W. Lee, C.G. Fonstad, Pseudomorphic In0.53Ga0.47As/AlAs/InAs resonant tunneling diodes with peak-to-valley current ratios of 30 at room temperature. Appl. Phys. Lett. 53, 1545 (1988)CrossRefGoogle Scholar
  33. 33.
    D. Zanato, S. Gokden, N. Balkan, B.K. Ridley, W.J. Schaff, Semicond. Sci. Technol. 19, 427–432 (2004)CrossRefGoogle Scholar
  34. 34.
    T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, S.A. Hiyamizu, Jpn. J. Appl. Phys. 26, L1332–L1334 (1987)CrossRefGoogle Scholar
  35. 35.
    E. Ozbay, D.M. Bloom, D.H. Chow, J.N. Schulman, IEEE Electron Dev. Lett. 14, 400 (1993)CrossRefGoogle Scholar
  36. 36.
    J.F. Whitaker, G.A. Mourou, T.C.L.G. Sollner, W.D. Goodhue, Appl.Phys. Lett. 53, 385 (1988)CrossRefGoogle Scholar
  37. 37.
    Digital and Mixed Signal Oscilloscopes, MSO/DPO70000 Series Datasheet, (Tektronix, U.S., 2015) p. 17Google Scholar
  38. 38.
    E.R. Brown, C.D. Parker, T.C.L.G. Sollner, A.R. Calawa, M.J. Manfra, C.L. Chen, S.W. Pang, K.M. Molvar, High-speed resonant-tunneling diodes made from the In0.53Ga0.47As/AlAs system. SPIE Proc High Speed Elec Device Scaling 1288, 122 (1990)CrossRefGoogle Scholar
  39. 39.
    E.R. Brown, High-speed resonant-tunneling diodes, in Heterostructure and Quantum Devices, ed. by N. G. Einspruch, W. R. Frensley, (Academic, Orlando, 1994), pp. 306–347Google Scholar
  40. 40.
  41. 41.
    W.-D. Zhang, E.R. Brown, T.A. Growden, P.R. Berger, R. Droopad, IEEE Trans Electron Devices 63, 4993–4997 (2016)CrossRefGoogle Scholar
  42. 42.
    D. F. Storm, T. A. Growden, W-D. Zhang, D. S. Katzer, M. T. Hardy, D. J. Meyer, E. R. Brown and P. R. Berger, RF-MBE growth of AlN/GaN/AlN resonant tunneling diodes on freestanding GaN and GaN templates, in Proceedings of 34th North American Molecular Beam Epitaxy Conference (Alberta, 2018)Google Scholar
  43. 43.
    E.R. Brown, W.D. Goodhue, T.C.G. Sollner, J. Appl. Phys. 64, 1519–1529 (1988)CrossRefGoogle Scholar
  44. 44.
    E.R. Brown, O.B. McMahon, L.J. Mahoney, K.M. Molvar, Electron. Lett. 32, 938–940 (1996)CrossRefGoogle Scholar
  45. 45.
    S.P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.C. Pan, S. C-C Yen, Y. Tanaka, N. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J.S. Speck, S. Nakamura, Acta Mater. 61, 945–995 (2013)CrossRefGoogle Scholar
  46. 46.
    M.A. Zimmler, J. Bao, I. Shalish, W. Yi, V. Narayanamurti, F. Capasso, Nanotechnology 18, 395201 (2007)CrossRefGoogle Scholar
  47. 47.
    Y.P. Varshni, Physica 34, 149–154 (1967)CrossRefGoogle Scholar
  48. 48.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley and Sons, New York, 1981)Google Scholar
  49. 49.
    O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, J. Appl. Phys. 87, 334–344 (2000)CrossRefGoogle Scholar
  50. 50.
    D. Carvalho, K. Müller-Caspary, M. Schowalter, T. Grieb, T. Mehrtens, A. Rosenauer, T. Ben, R. García1, A.R. Cubero, K. Lorenz, B. Daudin, F.M. Morales, Sci. Rep. (2016).
  51. 51.
    E.O. Kane, J. Phys. Chem. Solids 12, 181–188 (1959)CrossRefGoogle Scholar
  52. 52.
    G. Martin, A. Botchkarev, A. Rockett, H. Morkoc, Appl. Phys. Lett. 68, 2541–2543 (1996)CrossRefGoogle Scholar
  53. 53.
    W. Vandenberghe, B. Soree, W. Magnus, F. Groeseneken, J. Appl. Phys. 107, 054520 (2010)CrossRefGoogle Scholar
  54. 54.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)CrossRefGoogle Scholar
  55. 55.
    K.F. Berggren, B.E. Sernelius, Phys. Rev. B 24, 3240 (1984)Google Scholar
  56. 56.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  57. 57.
    T.S. Moss, Proc Phys Soc B 67, 775 (1954)CrossRefGoogle Scholar
  58. 58.
    M. Bouzidi, Z. Benzarti, I. Halidou, S. Soltani, Z. Chine, B. El Jani, Mat Sci Semicon Processing 42, 273 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • W. D. Zhang
    • 1
  • T. A. Growden
    • 2
  • E. R. Brown
    • 1
    Email author
  • P. R. Berger
    • 2
  • D. F. Storm
    • 3
  • D. J. Meyer
    • 3
  1. 1.Departments of Physics and Electrical EngineeringWright State UniversityDaytonUSA
  2. 2.Department of Electrical and Computer EngineeringThe Ohio State UniversityColumbusUSA
  3. 3.U.S. Naval Research LaboratoryWashington, DCUSA

Personalised recommendations