Advertisement

Cellular and Extracellular Homeostasis in Fluctuating Mechanical Environments

  • Béla SukiEmail author
  • Harikrishnan Parameswaran
  • Calebe Alves
  • Ascânio D. Araújo
  • Erzsébet Bartolák-Suki
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 23)

Abstract

Homeostasis is considered to be a cellular feedback mechanism that maintains a target such as mean blood pressure at a well-defined level, which is called upward causation. In this chapter, we consider a downward causation in which higher level properties are not only sensed by cells, but they also cause changes in cellular level behavior. Specifically, we examine how fluctuations at the level of the target, such as beat-to-beat blood pressure variability, present themselves as boundary conditions at the level of the cell and how this affects cellular behavior such cytoskeletal structure or homeostasis of bioenergetics. The changes in low level mechanisms may feed back to the regulation of the target until some homeostasis is achieved in which the system is under far from equilibrium conditions but without ever reaching a steady state. Consequently, the target is allowed to fluctuate within homeostatic limits. We will first summarize current concepts in conventional mechanotransduction and then discuss the dynamic aspects of mechanotransduction in the presence of noisy mechanical inputs, called fluctuation-driven mechanotransduction (FDM). Next, we will demonstrate how FDM alters cytoskeletal organization using a computational model of the actin-myosin network under time-varying strain boundary conditions in which peak strains vary from cycle to cycle. The simulation results imply that FDM should be considered as an emergent multiscale network phenomenon. In vascular smooth muscle cells, cytoskeletal structural alterations also lead to mitochondrial remodeling with subsequent changes in ATP production. The latter affects cell contractility as well as bioenergetics which in turn feed back to collagen maintenance, vascular wall stiffness and ultimately blood pressure regulation. We argue that FDM is a general phenomenon that other cell types also exhibit such as enhanced surfactant production by lung epithelial cells due to tidal volume variability. Following some speculation on the possible roles of fluctuations in diseases and aging, we will offer a general picture of how the breakdown of FDM disturbs homeostasis which can lead to the pathogenesis of diseases.

Keywords

Mechanotransduction Network Cytoskeleton Mitochondria Disease Aging 

References

  1. 1.
    Cannon, W.R.: Organization for physiological homeostasis. Physiol. Rev. 9, 399–431 (1929)CrossRefGoogle Scholar
  2. 2.
    Atlas, S.A., Laragh, J.H.: Atrial natriuretic peptide: a new factor in hormonal control of blood pressure and electrolyte homeostasis. Annu. Rev. Med. 37, 397–414 (1986).  https://doi.org/10.1146/annurev.me.37.020186.002145CrossRefGoogle Scholar
  3. 3.
    Kohan, D.E., Rossi, N.F., Inscho, E.W., Pollock, D.M.: Regulation of blood pressure and salt homeostasis by endothelin. Physiol. Rev. 91(1), 1–77 (2011).  https://doi.org/10.1152/physrev.00060.2009CrossRefGoogle Scholar
  4. 4.
    Wiig, H., Luft, F.C., Titze, J.M.: The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta. Physiol. (Oxf.) 222(3) (2018).  https://doi.org/10.1111/apha.13006CrossRefGoogle Scholar
  5. 5.
    Rodbard, S.: Vascular caliber. Cardiology 60(1), 4–49 (1975).  https://doi.org/10.1159/000169701CrossRefGoogle Scholar
  6. 6.
    Murray, C.D.: The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U S A. 12(3), 207–214 (1926)CrossRefGoogle Scholar
  7. 7.
    Zamir, M.: Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 69(4), 449–461 (1977)CrossRefGoogle Scholar
  8. 8.
    Humphrey, J.D., Dufresne, E.R., Schwartz, M.A.: Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014).  https://doi.org/10.1038/nrm3896CrossRefGoogle Scholar
  9. 9.
    Ingber, D.E.: Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575–599 (1997).  https://doi.org/10.1146/annurev.physiol.59.1.575CrossRefGoogle Scholar
  10. 10.
    Chien, S.: Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circulatory Physiol. 292(3), H1209–H1224 (2007).  https://doi.org/10.1152/ajpheart.01047.2006CrossRefGoogle Scholar
  11. 11.
    Humphrey, J.D.: Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50(2), 53–78 (2008).  https://doi.org/10.1007/s12013-007-9002-3CrossRefGoogle Scholar
  12. 12.
    Canovic, E.P., Zollinger, A.J., Tam, S.N., Smith, M.L., Stamenovic, D.: Tensional homeostasis in endothelial cells is a multicellular phenomenon. Am. J. Physiol. Cell Physiol. 311(3), C528–C535 (2016).  https://doi.org/10.1152/ajpcell.00037.2016CrossRefGoogle Scholar
  13. 13.
    Zollinger, A.J., Xu, H., Figueiredo, J., Paredes, J., Seruca, R., Stamenovic, D., Smith, M.L.: Dependence of tensional homeostasis on cell type and on cell-cell interactions. Cell Mol. Bioeng. 11(3), 175–184 (2018).  https://doi.org/10.1007/s12195-018-0527-xCrossRefGoogle Scholar
  14. 14.
    Praetorius, H.A., Frokiaer, J., Leipziger, J.: Transepithelial pressure pulses induce nucleotide release in polarized MDCK cells. Am. J. Physiol. Renal. Physiol. 288(1), F133–F141 (2005).  https://doi.org/10.1152/ajprenal.00238.2004CrossRefGoogle Scholar
  15. 15.
    Jacobs, C.R., Temiyasathit, S., Castillo, A.B.: Osteocyte mechanobiology and pericellular mechanics. Annu. Rev. Biomed. Eng. 12, 369–400 (2010).  https://doi.org/10.1146/annurev-bioeng-070909-105302CrossRefGoogle Scholar
  16. 16.
    Shao, Y.Y., Wang, L., Welter, J.F., Ballock, R.T.: Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone 50(1), 79–84 (2012).  https://doi.org/10.1016/j.bone.2011.08.033CrossRefGoogle Scholar
  17. 17.
    Luo, N., Conwell, M.D., Chen, X., Kettenhofen, C.I., Westlake, C.J., Cantor, L.B., Wells, C.D., Weinreb, R.N., Corson, T.W., Spandau, D.F., Joos, K.M., Iomini, C., Obukhov, A.G., Sun, Y.: Primary cilia signaling mediates intraocular pressure sensation. Proc. Natl. Acad. Sci. U S A 111(35), 12871–12876 (2014).  https://doi.org/10.1073/pnas.1323292111CrossRefGoogle Scholar
  18. 18.
    Martineau, L.C., Gardiner, P.F.: Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J. Appl. Physiol. 91(2), 693–702 (2001)CrossRefGoogle Scholar
  19. 19.
    Tock, Y., Ljubisavljevic, M., Thunberg, J., Windhorst, U., Inbar, G.F., Johansson, H.: Information-theoretic analysis of de-efferented single muscle spindles. Biol. Cybern. 87(4), 241–248 (2002).  https://doi.org/10.1007/s00422-002-0341-2zbMATHCrossRefGoogle Scholar
  20. 20.
    Fisher, A.B., Al-Mehdi, A.B., Manevich, Y.: Shear stress and endothelial cell activation. Crit. Care Med. 30(5), S192–S197 (2002)CrossRefGoogle Scholar
  21. 21.
    Osol, G.: Mechanotransduction by vascular smooth muscle. J. Vasc. Res. 32(5), 275–292 (1995)CrossRefGoogle Scholar
  22. 22.
    Suki, B., Ito, S., Stamenovic, D., Lutchen, K.R., Ingenito, E.P.: Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 98(5), 1892–1899 (2005)CrossRefGoogle Scholar
  23. 23.
    Waters, C.M., Sporn, P.H., Liu, M., Fredberg, J.J.: Cellular biomechanics in the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 283(3), L503–509 (2002).  https://doi.org/10.1152/ajplung.00141.2002CrossRefGoogle Scholar
  24. 24.
    Wirtz, H.R., Dobbs, L.G.: Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250(4985), 1266–1269 (1990)CrossRefGoogle Scholar
  25. 25.
    Torday, J.S.: Homeostasis as the mechanism of evolution. Biol. (Basel) 4(3), 573–590 (2015).  https://doi.org/10.3390/biology4030573CrossRefGoogle Scholar
  26. 26.
    Waldeck, M.R., Lambert, M.I.: Heart rate during sleep: implications for monitoring training status. J. Sports Sci. Med. 2(4), 133–138 (2003)Google Scholar
  27. 27.
    Peng, C.K., Buldyrev, S.V., Hausdorff, J.M., Havlin, S., Mietus, J.E., Simons, M., Stanley, H.E., Goldberger, A.L.: Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integr. Physiol. Behav. Sci. 29(3), 283–293 (1994)CrossRefGoogle Scholar
  28. 28.
    Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5(1), 82–87 (1995).  https://doi.org/10.1063/1.166141CrossRefGoogle Scholar
  29. 29.
    van de Borne, P., Schintgen, M., Niset, G., Schoenfeld, P., Nguyen, H., Degre, S., Degaute, J.P.: Does cardiac denervation affect the short-term blood pressure variability in humans? J. Hypertens. 12(12), 1395–1403 (1994)Google Scholar
  30. 30.
    Dellaca, R.L., Aliverti, A., Lo Mauro, A., Lutchen, K.R., Pedotti, A., Suki, B.: Correlated variability in the breathing pattern and end-expiratory lung volumes in conscious humans. PLoS ONE 10(3), e0116317 (2015).  https://doi.org/10.1371/journal.pone.0116317CrossRefGoogle Scholar
  31. 31.
    Hoffman, B.D., Grashoff, C., Schwartz, M.A.: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356), 316–323 (2011).  https://doi.org/10.1038/nature10316CrossRefGoogle Scholar
  32. 32.
    Bartolak-Suki, E., Imsirovic, J., Parameswaran, H., Wellman, T.J., Martinez, N., Allen, P.G., Frey, U., Suki, B.: Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function. Nat. Mater. 14(10), 1049–1057 (2015).  https://doi.org/10.1038/nmat4358CrossRefGoogle Scholar
  33. 33.
    Noble, D.: A theory of biological relativity: no privileged level of causation. Interface Focus 2(1), 55–64 (2012).  https://doi.org/10.1098/rsfs.2011.0067CrossRefGoogle Scholar
  34. 34.
    Que, C.L., Kenyon, C.M., Olivenstein, R., Macklem, P.T., Maksym, G.N.: Homeokinesis and short-term variability of human airway caliber. J. Appl. Physiol. 91(3), 1131–1141 (2001)CrossRefGoogle Scholar
  35. 35.
    Suki, B., Parameswaran, H., Imsirovic, J., Bartolak-Suki, E.: Regulatory roles of fluctuation-driven mechanotransduction in cell function. Physiol. (Bethesda) 31(5), 346–358 (2016).  https://doi.org/10.1152/physiol.00051.2015CrossRefGoogle Scholar
  36. 36.
    Alenghat, F.J., Ingber, D.E.: Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE. 2002(119), pe6 (2002).  https://doi.org/10.1126/stke.2002.119.pe6CrossRefGoogle Scholar
  37. 37.
    Chatterjee, S., Fisher, A.B.: Mechanotransduction: forces, sensors, and redox signaling. Antioxid. Redox Signal. 20(6), 868–871 (2014).  https://doi.org/10.1089/ars.2013.5753CrossRefGoogle Scholar
  38. 38.
    Gieni, R.S., Hendzel, M.J.: Mechanotransduction from the ECM to the genome: are the pieces now in place? J. Cell. Biochem. 104(6), 1964–1987 (2008).  https://doi.org/10.1002/jcb.21364CrossRefGoogle Scholar
  39. 39.
    Ingber, D.E.: Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20(7), 811–827 (2006).  https://doi.org/10.1096/fj.05-5424revCrossRefGoogle Scholar
  40. 40.
    Mammoto, T., Mammoto, A., Ingber, D.E.: Mechanobiology and developmental control. Ann. Rev. Cell Dev. Biol. 29, 27–61 (2013).  https://doi.org/10.1146/annurev-cellbio-101512-122340CrossRefGoogle Scholar
  41. 41.
    Orr, A.W., Helmke, B.P., Blackman, B.R., Schwartz, M.A.: Mechanisms of mechanotransduction. Dev. Cell 10(1), 11–20 (2006).  https://doi.org/10.1016/j.devcel.2005.12.006CrossRefGoogle Scholar
  42. 42.
    Schwartz, M.A., DeSimone, D.W.: Cell adhesion receptors in mechanotransduction. Curr. Opin. Cell Biol. 20(5), 551–556 (2008).  https://doi.org/10.1016/j.ceb.2008.05.005CrossRefGoogle Scholar
  43. 43.
    Tschumperlin, D.J.: Mechanotransduction. Compr. Physiol. 1(2), 1057–1073 (2011).  https://doi.org/10.1002/cphy.c100016CrossRefGoogle Scholar
  44. 44.
    Cavallaro, U., Christofori, G.: Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4(2), 118–132 (2004).  https://doi.org/10.1038/nrc1276CrossRefGoogle Scholar
  45. 45.
    Geiger, B., Spatz, J.P., Bershadsky, A.D.: Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10(1), 21–33 (2009).  https://doi.org/10.1038/nrm2593CrossRefGoogle Scholar
  46. 46.
    Juliano, R.L.: Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Ann. Rev. Pharmacol. Toxicol. 42, 283–323 (2002).  https://doi.org/10.1146/annurev.pharmtox.42.090401.151133CrossRefGoogle Scholar
  47. 47.
    Romer, L.H., Birukov, K.G., Garcia, J.G.: Focal adhesions: paradigm for a signaling nexus. Circ. Res. 98(5), 606–616 (2006).  https://doi.org/10.1161/01.RES.0000207408.31270.dbCrossRefGoogle Scholar
  48. 48.
    Hynes, R.O.: Integrins: bidirectional, allosteric signaling machines. Cell 110(6), 673–687 (2002)CrossRefGoogle Scholar
  49. 49.
    Hynes, R.O.: Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1), 11–25 (1992)CrossRefGoogle Scholar
  50. 50.
    Ruoslahti, E.: Integrins. J. Clin. Invest. 87(1), 1–5 (1991).  https://doi.org/10.1172/JCI114957CrossRefGoogle Scholar
  51. 51.
    Loftus, J.C., Liddington, R.C.: New insights into integrin-ligand interaction. J. Clin. Invest. 100(11), S77–S81 (1997)Google Scholar
  52. 52.
    Hughes, P.E., Renshaw, M.W., Pfaff, M., Forsyth, J., Keivens, V.M., Schwartz, M.A., Ginsberg, M.H.: Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88(4), 521–530 (1997)CrossRefGoogle Scholar
  53. 53.
    Smyth, S.S., Joneckis, C.C., Parise, L.V.: Regulation of vascular integrins. Blood 81(11), 2827–2843 (1993)CrossRefGoogle Scholar
  54. 54.
    Schwartz, M.A.: Integrin signaling revisited. Trends Cell Biol. 11(12), 466–470 (2001)CrossRefGoogle Scholar
  55. 55.
    Aplin, A.E., Howe, A., Alahari, S.K., Juliano, R.L.: Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50(2), 197–263 (1998)Google Scholar
  56. 56.
    Brancaccio, M., Hirsch, E., Notte, A., Selvetella, G., Lembo, G., Tarone, G.: Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc. Res. 70(3), 422–433 (2006).  https://doi.org/10.1016/j.cardiores.2005.12.015CrossRefGoogle Scholar
  57. 57.
    Iqbal, J., Zaidi, M.: Molecular regulation of mechanotransduction. Biochem. Biophys. Res. Commun. 328(3), 751–755 (2005).  https://doi.org/10.1016/j.bbrc.2004.12.087CrossRefGoogle Scholar
  58. 58.
    Zhang, W., Liu, H.T.: MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12(1), 9–18 (2002).  https://doi.org/10.1038/sj.cr.7290105MathSciNetCrossRefGoogle Scholar
  59. 59.
    Klemke, R.L., Cai, S., Giannini, A.L., Gallagher, P.J., de Lanerolle, P., Cheresh, D.A.: Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137(2), 481–492 (1997)CrossRefGoogle Scholar
  60. 60.
    Morishima-Kawashima, M., Kosik, K.S.: The pool of map kinase associated with microtubules is small but constitutively active. Mol. Biol. Cell 7(6), 893–905 (1996)CrossRefGoogle Scholar
  61. 61.
    Clark, E.A., King, W.G., Brugge, J.S., Symons, M., Hynes, R.O.: Integrin-mediated signals regulated by members of the rho family of GTPases. J. Cell Biol. 142(2), 573–586 (1998)CrossRefGoogle Scholar
  62. 62.
    Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., Kaibuchi, K.: Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271(34), 20246–20249 (1996)CrossRefGoogle Scholar
  63. 63.
    Roan. E., Waters, C.M.: What do we know about mechanical strain in lung alveoli. Am. J. Physiol. Lung Cell. Mol. Physiol. 301(5), L625–L635 (2011).  https://doi.org/10.1152/ajplung.00105.2011CrossRefGoogle Scholar
  64. 64.
    Tschumperlin, D.J., Margulies, S.S.: Alveolar epithelial surface area-volume relationship in isolated rat lungs. J. Appl. Physiol. 86(6), 2026–2033 (1999)CrossRefGoogle Scholar
  65. 65.
    LaPrad, A.S., Lutchen, K.R., Suki, B.: A mechanical design principle for tissue structure and function in the airway tree. PLoS Comput. Biol. 9(5), e1003083 (2013).  https://doi.org/10.1371/journal.pcbi.1003083MathSciNetCrossRefGoogle Scholar
  66. 66.
    Sinclair, S.E., Molthen, R.C., Haworth, S.T., Dawson, C.A., Waters, C.M.: Airway strain during mechanical ventilation in an intact animal model. Am. J. Respir. Crit. Care Med. 176(8), 786–794 (2007).  https://doi.org/10.1164/rccm.200701-088OCCrossRefGoogle Scholar
  67. 67.
    Liu, H., Yambe, T., Sasada, H., Nanka, S., Tanaka, A., Nagatomi, R., Nitta, S.: Comparison of heart rate variability and stroke volume variability. Auton. Neurosci. 116(1–2), 69–75 (2004).  https://doi.org/10.1016/j.autneu.2004.09.003CrossRefGoogle Scholar
  68. 68.
    Peng, C.K., Mietus, J., Hausdorff, J.M., Havlin, S., Stanley, H.E., Goldberger, A.L.: Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70(9), 1343–1346 (1993).  https://doi.org/10.1103/PhysRevLett.70.1343CrossRefGoogle Scholar
  69. 69.
    Jelinek, H.F., Imam, H.M., Al-Aubaidy, H., Khandoker, A.H.: Association of cardiovascular risk using non-linear heart rate variability measures with the framingham risk score in a rural population. Front. Physiol. 4. ARTN 186 (2013).  https://doi.org/10.3389/fphys.2013.00186
  70. 70.
    Cheng, C., Helderman, F., Tempel, D., Segers, D., Hierck, B., Poelmann, R., van Tol, A., Duncker, D.J., Robbers-Visser, D., Ursem, N.T., van Haperen, R., Wentzel, J.J., Gijsen, F., van der Steen, A.F., de Crom, R., Krams, R.: Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis 195(2), 225–235 (2007).  https://doi.org/10.1016/j.atherosclerosis.2006.11.019CrossRefGoogle Scholar
  71. 71.
    Karau, K.L., Krenz, G.S., Dawson, C.A.: Branching exponent heterogeneity and wall shear stress distribution in vascular trees. Am. J. Physiol. Heart Circ. Physiol. 280(3), H1256–H1263 (2001)CrossRefGoogle Scholar
  72. 72.
    Reneman, R.S., Hoeks, A.P.: Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med. Biol. Eng. Comput. 46(5), 499–507 (2008).  https://doi.org/10.1007/s11517-008-0330-2CrossRefGoogle Scholar
  73. 73.
    Uzarski, J.S., Scott, E.W., McFetridge, P.S.: Adaptation of endothelial cells to physiologically-modeled, variable shear stress. PLoS ONE 8(2), e57004 (2013).  https://doi.org/10.1371/journal.pone.0057004CrossRefGoogle Scholar
  74. 74.
    Mortola, J.P., Lanthier, C.: Scaling the amplitudes of the circadian pattern of resting oxygen consumption, body temperature and heart rate in mammals. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 139(1), 83–95 (2004).  https://doi.org/10.1016/j.cbpb.2004.07.007CrossRefGoogle Scholar
  75. 75.
    West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276(5309), 122–126 (1997)CrossRefGoogle Scholar
  76. 76.
    Vogel, V.: Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Ann. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).  https://doi.org/10.1146/annurev.biophys.35.040405.102013CrossRefGoogle Scholar
  77. 77.
    Evans, E.A., Calderwood, D.A.: Forces and bond dynamics in cell adhesion. Science 316(5828), 1148–1153 (2007).  https://doi.org/10.1126/science.1137592CrossRefGoogle Scholar
  78. 78.
    Liu, F., Ou-Yang, Z.C.: Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 74(5 Pt 1), 051904 (2006).  https://doi.org/10.1103/PhysRevE.74.051904CrossRefGoogle Scholar
  79. 79.
    Imsirovic, J., Derricks, K., Buczek-Thomas, J.A., Rich, C.B., Nugent, M.A., Suki, B.: A novel device to stretch multiple tissue samples with variable patterns: application for mRNA regulation in tissue-engineered constructs. Biomatter. 3(3) (2013).  https://doi.org/10.4161/biom.24650CrossRefGoogle Scholar
  80. 80.
    Eldib, M., Dean, D.A.: Cyclic stretch of alveolar epithelial cells alters cytoskeletal micromechanics. Biotechnol. Bioeng. 108(2), 446–453 (2011).  https://doi.org/10.1002/bit.22941CrossRefGoogle Scholar
  81. 81.
    Parameswaran, H., Lutchen, K.R., Suki, B.: A computational model of the response of adherent cells to stretch and changes in substrate stiffness. J. Appl. Physiol. 116(7), 825–834 (2014).  https://doi.org/10.1152/japplphysiol.00962.2013CrossRefGoogle Scholar
  82. 82.
    Kovacs, M., Thirumurugan, K., Knight, P.J., Sellers, J.R.: Load-dependent mechanism of nonmuscle myosin 2. Proc. Natl. Acad. Sci. U S A 104(24), 9994–9999 (2007).  https://doi.org/10.1073/pnas.0701181104CrossRefGoogle Scholar
  83. 83.
    Norstrom, M.F., Smithback, P.A., Rock, R.S.: Unconventional processive mechanics of non-muscle myosin IIB. J. Biol. Chem. 285(34), 26326–26334 (2010).  https://doi.org/10.1074/jbc.M110.123851CrossRefGoogle Scholar
  84. 84.
    Wang, N., Tolic-Norrelykke, I.M., Chen, J., Mijailovich, S.M., Butler, J.P., Fredberg, J.J., Stamenovic, D.: Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282(3), C606–C616 (2002).  https://doi.org/10.1152/ajpcell.00269.2001CrossRefGoogle Scholar
  85. 85.
    Gao, Y.Z., Saphirstein, R.J., Yamin, R., Suki, B., Morgan, K.G.: Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function? Am. J. Physiol. Heart Circ. Physiol. 307(8), H1252–H1261 (2014).  https://doi.org/10.1152/ajpheart.00392.2014CrossRefGoogle Scholar
  86. 86.
    Ehrenberg, B., Montana, V., Wei, M.D., Wuskell, J.P., Loew, L.M.: Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys. J. 53(5), 785–794 (1988).  https://doi.org/10.1016/S0006-3495(88)83158-8CrossRefGoogle Scholar
  87. 87.
    Kadenbach, B., Ramzan, R., Wen, L., Vogt, S.: New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms. Biochim. Biophys. Acta 1800 3, 205–212 (2010).  https://doi.org/10.1016/j.bbagen.2009.04.019CrossRefGoogle Scholar
  88. 88.
    Otera, H., Ishihara, N., Mihara, K.: New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta 1833 5, 1256–1268 (2013).  https://doi.org/10.1016/j.bbamcr.2013.02.002CrossRefGoogle Scholar
  89. 89.
    Bartolak-Suki, E., Imsirovic, J., Nishibori, Y., Krishnan, R., Suki, B.: Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int. J. Mol. Sci. 18(8), 1812 (2017).  https://doi.org/10.3390/ijms18081812CrossRefGoogle Scholar
  90. 90.
    Edwards, Y.S., Sutherland, L.M., Power, J.H., Nicholas, T.E., Murray, A.W.: Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells. FEBS Lett. 448(1), 127–130 (1999)CrossRefGoogle Scholar
  91. 91.
    Arold, S.P., Bartolak-Suki, E., Suki, B.: Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am. J. Physiol. Lung Cell Mol. Physiol. 296(4), L574–581. pii: 90454.2008 (2009).  https://doi.org/10.1152/ajplung.90454.2008CrossRefGoogle Scholar
  92. 92.
    Majumdar, A., Arold, S.P., Bartolak-Suki, E., Parameswaran, H., Suki, B.: Jamming dynamics of stretch-induced surfactant release by alveolar type II cells. J. Appl. Physiol. 112(5), 824–831 (2012).  https://doi.org/10.1152/japplphysiol.00975.2010CrossRefGoogle Scholar
  93. 93.
    Rose, F., Kurth-Landwehr, C., Sibelius, U., Reuner, K.H., Aktories, K., Seeger, W., Grimminger, F.: Role of actin depolymerization in the surfactant secretory response of alveolar epithelial type II cells. Am. J. Respir. Crit. Care Med. 159(1), 206–212 (1999).  https://doi.org/10.1164/ajrccm.159.1.9801106CrossRefGoogle Scholar
  94. 94.
    Abonyo, B.O., Gou, D., Wang, P., Narasaraju, T., Wang, Z., Liu, L.: Syntaxin 2 and SNAP-23 are required for regulated surfactant secretion. Biochemistry 43(12), 3499–3506 (2004).  https://doi.org/10.1021/bi036338yCrossRefGoogle Scholar
  95. 95.
    Sieber, J.J., Willig, K.I., Kutzner, C., Gerding-Reimers, C., Harke, B., Donnert, G., Rammner, B., Eggeling, C., Hell, S.W., Grubmuller, H., Lang, T.: Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317(5841), 1072–1076 (2007).  https://doi.org/10.1126/science.1141727CrossRefGoogle Scholar
  96. 96.
    Naruse, K., Sokabe, M.: Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am. J. Physiol. 264(4), C1037–C1044 (1993)CrossRefGoogle Scholar
  97. 97.
    Bezrukov, S.M., Vodyanoy, I.: Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378(6555), 362–364 (1995)CrossRefGoogle Scholar
  98. 98.
    Schurch, S., Bachofen, H., Goerke, J., Green, F.: Surface properties of rat pulmonary surfactant studied with the captive bubble method: adsorption, hysteresis, stability. Biochim. Biophys. Acta. 1103(1), 127–136 (1992)CrossRefGoogle Scholar
  99. 99.
    Tarbell, J.M., Simon, S.I., Curry, F.R.: Mechanosensing at the vascular interface. Ann. Rev. Biomed. Eng. 16, 505–532 (2014).  https://doi.org/10.1146/annurev-bioeng-071813-104908CrossRefGoogle Scholar
  100. 100.
    Mazzag, B., Barakat, A.I.: The effect of noisy flow on endothelial cell mechanotransduction: a computational study. Ann. Biomed. Eng. 39(2), 911–921 (2011).  https://doi.org/10.1007/s10439-010-0181-5CrossRefGoogle Scholar
  101. 101.
    Gouverneur, M., Berg, B., Nieuwdorp, M., Stroes, E., Vink, H.: Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J. Int. Med. 259(4), 393–400 (2006).  https://doi.org/10.1111/j.1365-2796.2006.01625.xCrossRefGoogle Scholar
  102. 102.
    Kuchan, M.J., Jo, H., Frangos, J.A.: Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am. J. Physiol. 267(3 Pt 1), C753–C758 (1994)CrossRefGoogle Scholar
  103. 103.
    Morgan, K.Y., Black, D.L.: Creation of a bioreactor for the application of variable amplitude mechanical stimulation of fibrin gel-based engineered cardiac tissue. In: III MRaLDB. (ed.) Cardiac Tissue Engineering: Methods and Protocols, Vol. 1181, pp. 177–187. Springer Science + Business Media, New York (2014a).  https://doi.org/10.1007/978-1-4939-1047-2_16Google Scholar
  104. 104.
    Morgan, K.Y., Black, L.D., III.: Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J. Tissue Eng. Regen. Med. (2014b).  https://doi.org/10.1002/term.1915CrossRefGoogle Scholar
  105. 105.
    Gupta, M., Doss, B., Lim, C.T., Voituriez, R., Ladoux, B.: Single cell rigidity sensing: a complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling. Cell Adhes. Migr. 10(5), 554–567 (2016).  https://doi.org/10.1080/19336918.2016.1173800CrossRefGoogle Scholar
  106. 106.
    Alves, C., Araujo, A.D., Oliveira, C.L., Imsirovic, J., Bartolak-Suki, E., Andrade, J.S., Suki, B.: Homeostatic maintenance via degradation and repair of elastic fibers under tension. Sci. Rep. 6, 27474 (2016).  https://doi.org/10.1038/srep27474CrossRefGoogle Scholar
  107. 107.
    Nissen, R., Cardinale, G.J., Udenfriend, S.: Increased turnover of arterial collagen in hypertensive rats. Proc. Natl. Acad. Sci. U S A 75(1), 451–453 (1978)CrossRefGoogle Scholar
  108. 108.
    Rucklidge, G.J., Milne, G., McGaw, B.A., Milne, E., Robins, S.P.: Turnover rates of different collagen types measured by isotope ratio mass spectrometry. Biochim. Biophys. Acta 1156(1), 57–61 (1992)CrossRefGoogle Scholar
  109. 109.
    Kjaer, M., Langberg, H., Miller, B.F., Boushel, R., Crameri, R., Koskinen, S., Heinemeier, K., Olesen, J.L., Dossing, S., Hansen, M., Pedersen, S.G., Rennie, M.J., Magnusson, P.: Metabolic activity and collagen turnover in human tendon in response to physical activity. J. Musculoskelet. Neuronal. Interact. 5(1), 41–52 (2005)Google Scholar
  110. 110.
    Heinemeier, K.M., Schjerling, P., Heinemeier, J., Magnusson, S.P., Kjaer, M.: Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. FASEB J. 27(5), 2074–2079 (2013).  https://doi.org/10.1096/fj.12-225599CrossRefGoogle Scholar
  111. 111.
    Goh, K.L., Holmes, D.F., Lu, Y., Purslow, P.P., Kadler, K.E., Bechet, D., Wess, T.J.: Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture. J. Appl. Physiol. 113(6), 878–888 (2012).  https://doi.org/10.1152/japplphysiol.00258.2012CrossRefGoogle Scholar
  112. 112.
    Austad, S.N.: Comparative aging and life histories in mammals. Exp. Gerontol. 32(1–2), 23–38 (1997)CrossRefGoogle Scholar
  113. 113.
    Branchet, M.C., Boisnic, S., Frances, C., Lesty, C., Robert, L.: Morphometric analysis of dermal collagen fibers in normal human skin as a function of age. Arch. Gerontol. Geriatr. 13(1), 1–14 (1991)CrossRefGoogle Scholar
  114. 114.
    Araujo, A.D., Majumdar, A., Parameswaran, H., Yi, E., Spencer, J.L., Nugent, M.A., Suki, B.: Dynamics of enzymatic digestion of elastic fibers and networks under tension. Proc. Natl. Acad. Sci. U S A 108(23), 9414–9419 (2011).  https://doi.org/10.1073/pnas.1019188108CrossRefGoogle Scholar
  115. 115.
    Gupta, M., Sarangi, B.R., Deschamps, J., Nematbakhsh, Y., Callan-Jones, A., Margadant, F., Mege, R.M., Lim, C.T., Voituriez, R., Ladoux, B.: Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 6, 7525 (2015).  https://doi.org/10.1038/ncomms8525CrossRefGoogle Scholar
  116. 116.
    Jesudason, R., Sato, S., Parameswaran, H., Araujo, A.D., Majumdar, A., Allen, P.G., Bartolak-Suki, E., Suki, B. Mechanical forces regulate elastase activity and binding site availability in lung elastin. Biophys. J. 99(9), 3076–3083, pii: S0006-3495(10)01164-1 (2010).  https://doi.org/10.1016/j.bpj.2010.09.018CrossRefGoogle Scholar
  117. 117.
    Orgel, J.P., San Antonio, J.D., Antipova, O.: Molecular and structural mapping of collagen fibril interactions. Connect. Tissue Res. 52(1), 2–17 (2011).  https://doi.org/10.3109/03008207.2010.511353CrossRefGoogle Scholar
  118. 118.
    Minary-Jolandan, M., Yu, M.F.: Nanomechanical heterogeneity in the gap and overlap regions of type I collagen fibrils with implications for bone heterogeneity. Biomacromolecules 10(9), 2565–2570 (2009).  https://doi.org/10.1021/bm900519vCrossRefGoogle Scholar
  119. 119.
    Christiansen, D.L., Huang, E.K., Silver, F.H.: Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19(5), 409–420 (2000)CrossRefGoogle Scholar
  120. 120.
    Bartolak-Suki, E., Suki, B.: Variability in cyclic stretch accelerates collagen secretion through cross talk with integrin Beta1 in cultured mouse fibroblasts. Am. J. Respir. Cell Mol. Biol. 5, A3499 (2011)Google Scholar
  121. 121.
    Imsirovic, J., Bartolak-Suki, E., Jawde, S.B., Parameswaran, H., Suki, B.: Blood pressure-induced physiological strain variability modulates wall structure and function in aorta rings. Physiol. Meas. 39(10), 105014 (2018).  https://doi.org/10.1088/1361-6579/aae65fCrossRefGoogle Scholar
  122. 122.
    Lavagnino, M., Brooks, A.E., Oslapas, A.N., Gardner, K.L., Arnoczky, S.P.: Crimp length decreases in lax tendons due to cytoskeletal tension, but is restored with tensional homeostasis. J. Orthop. Res. 35(3), 573–579 (2017).  https://doi.org/10.1002/jor.23489CrossRefGoogle Scholar
  123. 123.
    Tobin, M.J., Mador, M.J., Guenther, S.M., Lodato, R.F., Sackner, M.A.: Variability of resting respiratory drive and timing in healthy subjects. J. Appl. Physiol. 65(1), 309–317 (1988)CrossRefGoogle Scholar
  124. 124.
    Kuratomi, Y., Okazaki, N., Ishihara, T., Arai, T., Kira, S.: Variability of breath-by-breath tidal volume and its characteristics in normal and diseased subjects: ventilatory monitoring with electrical impedance pneumography. Jpn. J. Med. 24(2), 141–149 (1985)CrossRefGoogle Scholar
  125. 125.
    Brack, T., Jubran, A., Tobin, M.J.: Effect of elastic loading on variational activity of breathing. Am. J. Respir. Crit. Care Med. 155(4), 1341–1348 (1997).  https://doi.org/10.1164/ajrccm.155.4.9105077CrossRefGoogle Scholar
  126. 126.
    Brack, T., Jubran, A., Tobin, M.J.: Dyspnea and decreased variability of breathing in patients with restrictive lung disease. Am. J. Respir. Crit. Care Med. 165(9), 1260–1264 (2002).  https://doi.org/10.1164/rccm.2201018CrossRefGoogle Scholar
  127. 127.
    Boker, A., Graham, M.R., Walley, K.R., McManus, B.M., Girling, L.G., Walker, E., Lefevre, G.R., Mutch, W.A.: Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 165(4), 456–462 (2002).  https://doi.org/10.1164/ajrccm.165.4.2108006CrossRefGoogle Scholar
  128. 128.
    Thammanomai, A., Hamakawa, H., Bartolak-Suki, E., Suki, B.: Combined effects of ventilation mode and positive end-expiratory pressure on mechanics, gas exchange and the epithelium in mice with acute lung injury. PLoS ONE 8(1), e53934 (2013).  https://doi.org/10.1371/journal.pone.0053934CrossRefGoogle Scholar
  129. 129.
    Thammanomai, A., Hueser, L.E., Majumdar, A., Bartolak-Suki, E., Suki, B.: Design of a new variable-ventilation method optimized for lung recruitment in mice. J. Appl. Physiol. 104(5), 1329–1340 (2008).  https://doi.org/10.1152/japplphysiol.01002.2007CrossRefGoogle Scholar
  130. 130.
    Bartolák-Suki, E., Noble, P.B., Bou Jawde, S., Pillow, J.J., Suki, B.: Optimization of variable ventilation for physiology, immune response and surfactant enhancement in preterm lambs. Front. Physiol. 8, 425 (2017).  https://doi.org/10.3389/fphys.2017.00425CrossRefGoogle Scholar
  131. 131.
    Glass, L.: Synchronization and rhythmic processes in physiology. Nature 410(6825), 277–284 (2001)CrossRefGoogle Scholar
  132. 132.
    Mancia, G., Parati, G., Hennig, M., Flatau, B., Omboni, S., Glavina, F., Costa, B., Scherz, R., Bond, G., Zanchetti, A., Investigators, E.: Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J. Hypertens. 19(11), 1981–1989 (2001)CrossRefGoogle Scholar
  133. 133.
    Su, D.F., Miao, C.Y.: Blood pressure variability and organ damage. Clin. Exp. Pharmacol. Physiol. 28(9), 709–715 (2001)CrossRefGoogle Scholar
  134. 134.
    Parati, G., Pomidossi, G., Albini, F., Malaspina, D., Mancia, G.: Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J. Hypertens. 5(1), 93–98 (1987)CrossRefGoogle Scholar
  135. 135.
    Rothwell, P.M., Howard, S.C., Dolan, E., O’Brien, E., Dobson, J.E., Dahlof, B., Sever, P.S., Poulter, N.R.: Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 375(9718), 895–905 (2010).  https://doi.org/10.1016/S0140-6736(10)60308-XCrossRefGoogle Scholar
  136. 136.
    Miao, C.Y., Su, D.F.: The importance of blood pressure variability in rat aortic and left ventricular hypertrophy produced by sinoaortic denervation. J. Hypertens. 20(9), 1865–1872 (2002)CrossRefGoogle Scholar
  137. 137.
    Xie, H.H., Shen, F.M., Cao, Y.B., Li, H.L., Su, D.F.: Effects of low-dose ketanserin on blood pressure variability, baroreflex sensitivity and end-organ damage in spontaneously hypertensive rats. Clin. Sci. (Lond.) 108(6), 547–552 (2005).  https://doi.org/10.1042/CS20040310CrossRefGoogle Scholar
  138. 138.
    Schillaci, G., Bilo, G., Pucci, G., Laurent, S., Macquin-Mavier, I., Boutouyrie, P., Battista, F., Settimi, L., Desamericq, G., Dolbeau, G., Faini, A., Salvi, P., Mannarino, E., Parati, G.: Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension 60(2), 369–377 (2012).  https://doi.org/10.1161/hypertensionaha.112.197491CrossRefGoogle Scholar
  139. 139.
    Mitchell, G.F., Guo, C.Y., Benjamin, E.J., Larson, M.G., Keyes, M.J., Vita, J.A., Vasan, R.S., Levy, D.: Cross-sectional correlates of increased aortic stiffness in the community: the Framingham Heart Study. Circulation 115(20), 2628–2636 (2007).  https://doi.org/10.1161/CIRCULATIONAHA.106.667733CrossRefGoogle Scholar
  140. 140.
    Zhang, Y., Agnoletti, D., Safar, M.E., Blacher, J.: Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension 58(2), 155–160 (2011).  https://doi.org/10.1161/hypertensionaha.111.174383CrossRefGoogle Scholar
  141. 141.
    Constant, I., Laude, D., Elghozi, J.L., Murat, I.: Assessment of autonomic cardiovascular changes associated with recovery from anaesthesia in children: a study using spectral analysis of blood pressure and heart rate variability. Paediatr. Anaesth. 10(6), 653–660 (2000)CrossRefGoogle Scholar
  142. 142.
    Conci, F., Di Rienzo, M., Castiglioni, P.: Blood pressure and heart rate variability and baroreflex sensitivity before and after brain death. J. Neurol. Neurosurg. Psychiatry 71(5), 621–631 (2001)CrossRefGoogle Scholar
  143. 143.
    Calderwood, S.K., Murshid, A., Prince, T.: The shock of aging: molecular chaperones and the heat shock response in longevity and aging–a mini-review. Gerontology 55(5), 550–558 (2009).  https://doi.org/10.1159/000225957CrossRefGoogle Scholar
  144. 144.
    Engelhardt, M., Martens, U.M.: The implication of telomerase activity and telomere stability for replicative aging and cellular immortality (review). Oncol. Rep. 5(5), 1043–1052 (1998)Google Scholar
  145. 145.
    Lee, H.C., Wei, Y.H.: Mitochondrial alterations, cellular response to oxidative stress and defective degradation of proteins in aging. Biogerontology 2(4), 231–244 (2001)MathSciNetCrossRefGoogle Scholar
  146. 146.
    Avery, N.C., Bailey, A.J.: Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand. J. Med. Sci. Sports 15(4), 231–240 (2005)CrossRefGoogle Scholar
  147. 147.
    Reiser, K.M., Hennessy, S.M., Last, J.A.: Analysis of age-associated changes in collagen crosslinking in the skin and lung in monkeys and rats. Biochem. Biophys. Acta. 926(3), 339–348 (1987)CrossRefGoogle Scholar
  148. 148.
    Liu, F., Mih, J.D., Shea, B.S., Kho, A.T., Sharif, A.S., Tager, A.M., Tschumperlin, D.J.: Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190(4), 693–706. pii: jcb.201004082 (2010).  https://doi.org/10.1083/jcb.201004082CrossRefGoogle Scholar
  149. 149.
    Phillip, J.M., Aifuwa, I., Walston, J., Wirtz, D.: The mechanobiology of aging. Ann. Rev. Biomed. Eng. 17, 113–141 (2015).  https://doi.org/10.1146/annurev-bioeng-071114-040829CrossRefGoogle Scholar
  150. 150.
    Vafaie, F., Yin, H., O’Neil, C., Nong, Z., Watson, A., Arpino, J.M., Chu, M.W., Wayne Holdsworth, D., Gros, R., Pickering, J.G.: Collagenase-resistant collagen promotes mouse aging and vascular cell senescence. Aging Cell 13(1), 121–130 (2014).  https://doi.org/10.1111/acel.12155CrossRefGoogle Scholar
  151. 151.
    Harman, D.: The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20(4), 145–147 (1972)CrossRefGoogle Scholar
  152. 152.
    Bratic, A., Larsson, N.G.: The role of mitochondria in aging. J. Clin. Invest. 123(3), 951–957 (2013).  https://doi.org/10.1172/JCI64125CrossRefGoogle Scholar
  153. 153.
    Copeland, J.M., Cho, J., Lo Jr., T., Hur, J.H., Bahadorani, S., Arabyan, T., Rabie, J., Soh, J., Walker, D.W.: Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr. Biol. 19(19), 1591–1598 (2009).  https://doi.org/10.1016/j.cub.2009.08.016CrossRefGoogle Scholar
  154. 154.
    Acuna-Castroviejo, D., Carretero, M., Doerrier, C., Lopez, L.C., Garcia-Corzo, L., Tresguerres, J.A., Escames, G.: Melatonin protects lung mitochondria from aging. Age (Dordr) 34(3), 681–692 (2012).  https://doi.org/10.1007/s11357-011-9267-8CrossRefGoogle Scholar
  155. 155.
    Quiros, P.M., Mottis, A., Auwerx, J.: Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17(4), 213–226 (2016).  https://doi.org/10.1038/nrm.2016.23CrossRefGoogle Scholar
  156. 156.
    Gomes, A.P., Price, N.L., Ling, A.J., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., Mercken, E.M., Palmeira, C.M., de Cabo, R., Rolo, A.P., Turner, N., Bell, E.L., Sinclair, D.A.: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7), 1624–1638 (2013).  https://doi.org/10.1016/j.cell.2013.11.037CrossRefGoogle Scholar
  157. 157.
    Labat-Robert, J., Robert, L.: Aging of the extracellular matrix and its pathology. Exp. Gerontol. 23(1), 5–18 (1988)CrossRefGoogle Scholar
  158. 158.
    Mackay, E.H., Banks, J., Sykes, B., Lee, G.: Structural basis for the changing physical properties of human pulmonary vessels with age. Thorax 33(3), 335–344 (1978)CrossRefGoogle Scholar
  159. 159.
    Sobin, S.S., Fung, Y.C., Tremer, H.M.: Collagen and elastin fibers in human pulmonary alveolar walls. J. Appl. Physiol. 64(4), 1659–1675 (1988)CrossRefGoogle Scholar
  160. 160.
    Mays, P.K., McAnulty, R.J., Campa, J.S., Laurent, G.J.: Age-related changes in collagen synthesis and degradation in rat tissues: importance of degradation of newly synthesized collagen in regulating collagen production. Biochem. J. 276(2), 307–313 (1991)CrossRefGoogle Scholar
  161. 161.
    Pierce, J.A., Resnick, H., Henry, P.H.: Collagen and elastin metabolism in the lungs, skin, and bones of adult rats. J. Lab. Clin. Med. 69(3), 485–493 (1967)Google Scholar
  162. 162.
    Poole, A., Myllyla, R., Wagner, J.C., Brown, R.C.: Collagen biosynthesis enzymes in lung tissue and serum of rats with experimental silicosis. Br. J. Exp. Pathol. 66(5), 567–575 (1985)Google Scholar
  163. 163.
    Cerami, A.: Hypothesis: glucose as a mediator of aging. J. Am. Geriatr. Soc. 33(9), 626–634 (1985)CrossRefGoogle Scholar
  164. 164.
    Bellmunt, M.J., Portero, M., Pamplona, R., Cosso, L., Odetti, P., Prat, J.: Evidence for the Maillard reaction in rat lung collagen and its relationship with solubility and age. Biochem. Biophys. Acta. 1272(1), 53–60 (1995)Google Scholar
  165. 165.
    Miyata, T., Ishikawa, N., van Ypersele de Strihou, C. Carbonyl stress and diabetic complications. Clin. Chem. Lab. Med. CCLM/FESCC. 41(9), 1150–1158 (2003).  https://doi.org/10.1515/cclm.2003.178
  166. 166.
    Monnier, V.M.: Nonenzymatic glycosylation, the Maillard reaction and the aging process. J. Gerontol 45(4), B105–B111 (1990)CrossRefGoogle Scholar
  167. 167.
    Janson, I.A., Putnam, A.J. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J. Biomed. Mater. Res. Part A (2014).  https://doi.org/10.1002/jbm.a.35254CrossRefGoogle Scholar
  168. 168.
    Bereiter-Hahn, J., Voth, M.: Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 27(3), 198–219 (1994).  https://doi.org/10.1002/jemt.1070270303CrossRefGoogle Scholar
  169. 169.
    Bach, D., Pich, S., Soriano, F.X., Vega, N., Baumgartner, B., Oriola, J., Daugaard, J.R., Lloberas, J., Camps, M., Zierath, J.R., Rabasa-Lhoret, R., Wallberg-Henriksson, H., Laville, M., Palacin, M., Vidal, H., Rivera, F., Brand, M., Zorzano, A.: Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278(19), 17190–17197 (2003).  https://doi.org/10.1074/jbc.m212754200CrossRefGoogle Scholar
  170. 170.
    Anesti, V., Scorrano, L.: The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta 1757(5–6), 692–699 (2006).  https://doi.org/10.1016/j.bbabio.2006.04.013CrossRefGoogle Scholar
  171. 171.
    Mancia, G., Bombelli, M., Facchetti, R., Madotto, F., Corrao, G., Trevano, F.Q., Grassi, G., Sega, R.: Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension 49(6), 1265–1270 (2007).  https://doi.org/10.1161/HYPERTENSIONAHA.107.088708CrossRefGoogle Scholar
  172. 172.
    Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., Spiegelman, B.M.: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1), 115–124 (1999).  https://doi.org/10.1016/S0092-8674(00)80611-XCrossRefGoogle Scholar
  173. 173.
    Veerman, D.P., Imholz, B.P., Wieling, W., Karemaker, J.M., van Montfrans, G.A.: Effects of aging on blood pressure variability in resting conditions. Hypertension 24(1), 120–130 (1994)CrossRefGoogle Scholar
  174. 174.
    Wu, C., Shlipak, M.G., Stawski, R.S., Peralta, C.A., Psaty, B.M., Harris, T.B., Satterfield, S., Shiroma, E.J., Newman, A.B., Odden, M.C., Health, A.B.C.S.: Visit-to-visit blood pressure variability and mortality and cardiovascular outcomes among older adults: the health, aging, and body composition study. Am. J. Hypertens. 30(2), 151–158 (2017).  https://doi.org/10.1093/ajh/hpw106CrossRefGoogle Scholar
  175. 175.
    Bartolák-Suki, E., Suki, B.: Variability in stretch amplitude partially restores age-related decline in mitochondrial structure and function in lung fibroblasts. Am. J. Respir. Crit. Care Med. 195, A2659 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Béla Suki
    • 1
    Email author
  • Harikrishnan Parameswaran
    • 2
  • Calebe Alves
    • 3
  • Ascânio D. Araújo
    • 3
  • Erzsébet Bartolák-Suki
    • 1
  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA
  2. 2.Department of Biomedical EngineeringNortheastern UniversityBostonUSA
  3. 3.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations