Advertisement

Application of Contour Equations to Kinematic Analysis of Complex and Compound Planetary Gears

  • Józef Wojnarowski
  • Józef DrewniakEmail author
  • Tomasz Kądziołka
  • Jerzy Kopeć
  • Konrad Stańco
  • Stanisław Zawiślak
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

In the paper, complex and compound 1 and 2 DOF planetary gears are analyzed aiming for reduction of internal circulating power. Two different methods were used: (i) method of contour graphs and (ii) well known Willis’ formula. The detailed analyses made for some exemplary layouts of compound planetary gears show usefulness of the proposed graph-based approach. The considerations were supplemented by the engineering method which is the Willis formula. An additional and perhaps even the main role of the use of Willis’ approach is checking correctness of the results obtained with the contour graph method.

Keywords

contour graph planetary gears kinematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cervantes-Sánchez, J., Rico-Martínez, J. M., Panduro-Calvario, C.: A general and systematic framework for the kinematic analysis of complex gear systems. Meccanica 47(1) 3–21 (2012).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ding, H., Huang, Z.: A new theory for the topological structure analysis of kinematic chains and its applications. Mechanism and Machine Theory 42(10) 1264–1279 (2007).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Drewniak, J, Zawiślak, S.: Linear-graph and contour-graph-based models of planetary gears. Journal of Theoretical and Applied Mechanics 48(2) 415-433 (2010).Google Scholar
  4. 4.
    Drewniak, J., Zawiślak, S.: Kinematical and dynamical analysis of closed kinematical chains using graphs and contour equations, PAMM: Proceedings in Applied Mechanics and Mathematics 9(1) 547-548 (2009).CrossRefGoogle Scholar
  5. 5.
    Drewniak, J., Zawiślak, S.: Analysis and modification of planetary gears based upon graph-theoretical models, Transactions of the Universities of Košice, 2 84-87 (2009).Google Scholar
  6. 6.
    Drewniak, J., Zawiślak, S.: Synthesis of planetary gears by means of artificial intelligence approach – graph based modeling, Solid State Phenomena 164 243-248 (2010).CrossRefGoogle Scholar
  7. 7.
    Drewniak, J., Kopeć, J., Zawiślak, S.: Analysis of automatic automotive gear boxes by means of versatiles graph-based methods. In: Beran, J. et al. (eds.) Advances in Mechanisms Design. Proceedings of TMM 2012, 81-86, Springer, Dordrecht, Heidelberg (2012).Google Scholar
  8. 8.
    Drewniak, J., Kopeć, J., Zawiślak, S., Kinematical analysis of variants of wind turbine drive by means of graph. In: Zawiślak, S., Rysiński, J. (eds.) Graph-Based Modelling in Engineering, 81-91. Mechanism and Machine Science, vol. 42, Springer, Cham (2017).Google Scholar
  9. 9.
    Drewniak, J., Garlicka, P., Kopeć, J., Zawiślak, S.: Modified method of the kinematic analysis of planar linkage mechanism for non-stationary motion modes. In: Corves, B., Lovasz, E.-C. at al (eds.) New Advances in Mechanisms, Mechanical Transmissions and Robotics, 15-23, Springer, Cham (2017).Google Scholar
  10. 10.
    Drewniak, J., Garlicka, P., Borowik, B.: Analysis of the kinematics of planar link mechanism with non-stationary motion of crank. In: Zawiślak, S., Rysiński, J. (eds.) Graph-Based Modelling in Engineering, 131-140, Mechanism and Machine Science, vol. 42, Springer, Cham (2017).Google Scholar
  11. 11.
    Drewniak, J., Kądziołka, T., Zawiślak, S.: Kinematics of bevel biplanetary gear. In: Goldfarb V., Trubachev E., Barmina N. (eds.) Advanced Gear Engineering. Mechanisms and Machine Science, vol. 51, 289-303, Springer, Cham (2018).Google Scholar
  12. 12.
    Marghitu, Dan B.: Kinematic Chains and Machine Components Design. Elsevier, Amsterdam 2005.CrossRefGoogle Scholar
  13. 13.
    Uyguroglu, M., Tokad, Y.: Kinematic analysis of robotic bevel-gear trains: An application of network model approach. Meccanica 33(3) 177–194 (1998).CrossRefGoogle Scholar
  14. 14.
    Wojnarowski, J.: The graph method of determining the loads in complex gear trains. Mechanism and Machine Theory 11(2) 103-121 (1976).CrossRefGoogle Scholar
  15. 15.
    Wojnarowski, J., Lidwin, A.: The application of signal flow graphs—the kinematic analysis of planetary gear trains. Mechanism and Machine Theory 10(1) 17-31 (1975).CrossRefGoogle Scholar
  16. 16.
    Wojnarowski, J., Kopeć, J., Zawiślak, S.: Gears and graphs. Journal of Theoretical and Applied Mechanics 44(1) 139-162 (2006).Google Scholar
  17. 17.
    Xue, H. L., Liu, G., Yang, X. H.: A review of graph theory application research in gears.Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230(10) 1697-1714 (2016).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Józef Wojnarowski
    • 1
  • Józef Drewniak
    • 2
    Email author
  • Tomasz Kądziołka
    • 1
  • Jerzy Kopeć
    • 2
  • Konrad Stańco
    • 2
  • Stanisław Zawiślak
    • 2
  1. 1.State University of Applied SciencesNowy SączPoland
  2. 2.University of Bielsko-BialaBielsko-BialaPoland

Personalised recommendations