Advertisement

Unified Kinematics of Parallel Schönflies Robots

  • Paul Zsombar-MurrayEmail author
  • Martin Pfurner
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

A suffcient set of constraint equations to carry out kinematic analysis is detailed in the context of 4 degree of freedom (dof) fully parallel 4-legged Schönflies manipulators. The set inevitably contains data pertaining to joint variables, end effector (EE) and fixed frame (FF) space design parameters. Therefore the equations are sometimes readily adaptable to direct kinematics (DK), inverse kinematics (IK), design problems or some combination by choosing any set of equation parameters to be unknowns, as many as there are equations. Numerical examples are presented. These serve to caution the reader regarding the pitfalls in one-size-fits-all methodology. It is observed that limited angular displacement workspace plagues many designs.

Keywords

computational algebraic geometry Kinematics parallel robot Schönflies motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Amine, L. Nurahmi, P. Wenger, S. Caro (2013) “Conceptual Design of Schöenies Motion Generators Based on the Wrench Graph”, Proc. ASME DETC, DOI: 6.  https://doi.org/10.1115/DETC2013-13084, 10pp.
  2. 2.
    R. Clavel (1991) “Conception d’un robot parallél rapid à 4 degré de liberté”, Ph.D. thesis #925, École polytechnique fédérale de Lausanne, 136pp.Google Scholar
  3. 3.
    C-C Lee, J-M Herv_e, (2011) “Isoconstrained parallel generators of Schönies Motion”, ASME JMR. DOI: 3. 021006.  https://doi.org/10.1115/1.4003690. 10pp.
  4. 4.
    P-C Lee, J-J Lee (2012) “Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenies motion”, Front. Mech. Eng. 2012, 7(2),  https://doi.org/10.1007/s11465-012-0324-5, pp.163-187.CrossRefGoogle Scholar
  5. 5.
    Q-C Li, J-M Hervé (2009) “Parallel mechanisms with bifurcation of Schönies motion”, IEEE Trans. Rob., v.25, n.1, pp.158-164.Google Scholar
  6. 6.
    V. Nabat, M. de la Rodriguez, O. Company, F. Pierrot, P. Dauchez. (2006) “Very fast Schönies motion generator, IEEE Conf. Indust. Techno., DOI: 365 - 370.  https://doi.org/10.1109/ICIT.2005.1600665, pp.365-370. Schönies Robots 11
  7. 7.
    K. Zhou, D. Mao, Z. Tao, (2002) “Kinematic analysis and application research on high-speed travelling double four-rod spatial parallel mechanism”, Int. J. Adv. Mfg. Tech. v.19, n.12, pp.873-878.CrossRefGoogle Scholar
  8. 8.
    P.J. Zsombor-Murray, A. Gfrerrer (2010) “A unied approach to direct kinematics of some reduced motion parallel manipulators”, ASME J. Mechanisms and Robotics, v.2, n.2, 021006  https://doi.org/10.1115/1.4001095, 10pp.CrossRefGoogle Scholar
  9. 9.
    R.L. Williams II (2016) “The Delta Parallel Robot: Kinematic Solutions”, Internet Publications www.ohio.edu/people/williar4/html/pdf/DeltaKin.pdf, 46pp.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mechanical EngineeringMCGill UniversityMontrealCanada
  2. 2.Unit Geometry & CADUniversity of InnsbruckInnsbruckAustria

Personalised recommendations