Advertisement

Manfred Husty: A Short Biography of his Scientific Life

  • Martin PfurnerEmail author
  • Hans-Peter Schröcker
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Professor Manfred L. Husty attains the age of 65 in June 2019, which is also the age of his retirement from the University of Innsbruck. This brief biography is intended to highlight his achievements and impact in the area of geometry and kinematics.

Keywords

Manfred Husty scientific life short biography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. Available at bertini.nd.edu with permanent doi: dx.doi.org/ https://doi.org/10.7274/R0H41PB5
  2. 2.
    Brunnthaler, K.: Synthesis of 4r linkages using kinematic mapping. Ph.D. thesis, University of Innsbruck (2007)Google Scholar
  3. 3.
    Hegedüs, G., Schicho, J., Schröcker, H.P.: Factorization of rational curves in the Study quadric and revolute linkages. Mech. Machine Theory 69(1), 142–152 (2013). DOI  https://doi.org/10.1016/j.mechmachtheory.2013.05.010CrossRefGoogle Scholar
  4. 4.
    Husty, M.L.: Schraubung des Flaggenraumes \( J_{3}^{(2)} \) Berichte der mathematisch-statistischen Sektion im Forschungszentrum Graz 217, 1–8 (1983)Google Scholar
  5. 5.
    Husty, M.L.: Zur Schraubung des Flaggenraumes. Ph.D. thesis, TU Graz (1983). 90 SGoogle Scholar
  6. 6.
    Husty, M.L.: Symmetrische Schrotungen im einfach isotropen Raum. Sb. d. österr. Ak. d. Wiss. math.-nw. Kl. 195, 291–306 (1986)Google Scholar
  7. 7.
    Husty, M.L.: Über eine symmetrische Schrotung mit einer Cayley-Fläche als Grundfläche. Stud. Sci. Math. Hungarica 22, 463–469 (1987)Google Scholar
  8. 8.
    Husty, M.L.: Zur Kinematik der ebenen äquiformen isotropen Geometrie. RAD-JAZU 444 (8), 111–120 (1987)Google Scholar
  9. 9.
    Husty, M.L.: Kinematik winkeltreuer Ähnlichkeiten der isotropen Ebene. Habilitationsschrift, Inst. f. Math. u. Angew. Geom., Arbeitsbericht 9 (1988). 94 pagesGoogle Scholar
  10. 10.
    Husty, M.L.: An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mechanism and Machine Theory 31, No. 4, 365–380 (1996). DOI  https://doi.org/10.1016/0094-114X(95)00091-CCrossRefGoogle Scholar
  11. 11.
    Husty, M.L., Karger, A.: Flächenläufige Bewegungsvorgänge in der Geometrie der winkeltreuen Ähnlichkeiten der isotropen Ebene I. Sb. d. österr. Ak. d. Wiss. 202, Heft 1-10, 1–22 (1993)Google Scholar
  12. 12.
    Husty, M.L., Karger, A.: Self-motions of Stewart-Gough platforms. In: Proceedings VIIth International Congress on the Theory of Machines and Mechanisms, pp. 245–250. Liberec, Czech Republic (1996)Google Scholar
  13. 13.
    Husty, M.L., Karger, A.: Architecture singular parallel manipulators and their self-motions. In: J. Lenarcic, M.M. Stanisic (eds.) Advances in Robot Kinematics, pp. 355–364. Kluwer Acad. Pub. (2000). ISBN 0-7923–6426-0Google Scholar
  14. 14.
    Husty, M.L., Karger, A.: Architecture singular parallel manipulators and their self-motions. In: Proceedings VIIIth International Congress on the Theory of Machines and Mechanisms, pp. 219–222. Liberec, Czech Republic (2000)CrossRefGoogle Scholar
  15. 15.
    Husty, M.L., Karger, A.: Self-motions of Griffis-Duffy type platforms. In: Proceedings of IEEE conference on Robotics and Automation (ICRA 2000), pp. 7–12. San Francisco, USA (2000). DOI  https://doi.org/10.1109/ROBOT.2000.844032
  16. 16.
    Husty, M.L., Karger, A.: Architecture singular planar Stewart-Gough platforms. In: Proceedings of the 10th workshop RAAD, p. 6. Vienna, Austria (2001). CD-Rom ProceedingsGoogle Scholar
  17. 17.
    Husty, M.L., Karger, A.: Self motions of Stewart-Gough platforms, an overview. In: Proceedings of the workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, pp. 131–141. Quebec City, Canada (2002)Google Scholar
  18. 18.
    Husty, M.L., Karger, A., Sachs, H., Steinhilper, W.: Kinematik und Robotik. Springer Verlag (1997). ISBN 978-3-540-63181-XGoogle Scholar
  19. 19.
    Husty, M.L., Nagy, P.T.: Dreidimensionale Liegruppen und ebene Kinematik. Mathematica Pannonica 1/1, 57–71 (1990)Google Scholar
  20. 20.
    Husty, M.L., Pfurner, M., Schröcker, H.P.: A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator. Mechanism and Machine Theory 42(1), 66–81 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Husty, M.L., Röschel, O.: Eine affin-kinematische Erzeugung gewisser Flächen vierter Ordnung mit zerfallendem Doppelkegelschnitt II. Glas. Math. 22 (42), 429–447 (1987)Google Scholar
  22. 22.
    Husty, M.L., Röschel, O.: Eine affin-kinematische Erzeugung gewisser Flächen vierter Ordnung mit zerfallendem Doppelkegelschnitt I. Glas. Math. 22 (42), 143–156 (1987)Google Scholar
  23. 23.
    Karger, A., Husty, M.L.: On self-motions of a class of parallel manipulators. In: J. Lenarcic, V. Parenti-Castelli (eds.) Advances in Robot Kinematics, pp. 339–348. Kluwer Acad. Pub. (1996). ISBN 0-7923-4124-4Google Scholar
  24. 24.
    Karger, A., Husty, M.L.: Recent results on self-motions of parallel manipulators. In: M. Ceccarelli (ed.) Proceedings of RAAD ’97, pp. 383–388 (1997). ISBN 88-87054–00-2Google Scholar
  25. 25.
    Karger, A., Husty, M.L.: Singularities and self-motions of Stewart-Gough platforms. In: J. Angeles, Zakhariev (eds.) NATO-ASI Workshop on Comuputational Methods in Mechanism Design, vol. 2, pp. 270–289 (1997)Google Scholar
  26. 26.
    Karger, A., Husty, M.L.: Classification of all self-motions of the original Stewart-Gough platform. Computer Aided Design 30(3), 205–215 (1998)CrossRefGoogle Scholar
  27. 27.
    Karger, A., Husty, M.L.: Schönflies-Borel-Bricard motions. In: SBORNIK, 22. Konference Geometrie a Pocitacova Grafica, pp. 40–45 (2002). ISBN 80-248-0185-XGoogle Scholar
  28. 28.
    Li, Z., Schicho, J., Schröcker, H.P.: Factorization of motion polynomials. Journal of Symbolic Computation 92, 190–202 (2019)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pernkopf, F.: Workspace analysis of stewart gough manipulators. Ph.D. thesis, University of Innsbruck (2003)Google Scholar
  30. 30.
    Pfurner, M.: Analysis of spatial serial manipulators using kinematic mapping. Ph.D. thesis, University of Innsbruck (2006)Google Scholar
  31. 31.
    Schadlbauer, J.: Algebraic methods in kinematics and line geometry. Ph.D. thesis, University of Innsbruck (2014)Google Scholar
  32. 32.
    Stigger, T.: Kinematic analysis of lower-mobility parallel manipulators using efficient algebraic tools. Ph.D. thesis, University of Innsbruck (2019)Google Scholar
  33. 33.
    Study, E.: Von den Bewegungen und Umlegungen. Math. Ann. 39, 441–566 (1891)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Study, E.: Geometrie der Dynamen. B. G. Teubner (1903)Google Scholar
  35. 35.
    Vogler, H.: Räumliche Zwangläufe mit ebenen Bahnen. Grazer Math. Ber. 162, 1–17 (1981)Google Scholar
  36. 36.
    Vogler, H.: Vorwort des Herausgebers: Bemerkungen zu einem Satz von W. Blaschke und zur Methode von Borel-Bricard. Grazer Math. Ber. 352, 1–16 (2008)Google Scholar
  37. 37.
    Walter, D.R.: Analysis of planar and spatial mechanisms using algebraic methods. Ph.D. thesis, University of Innsbruck (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of InnsbruckInnsbruckAustria

Personalised recommendations