Advertisement

A new inspection robot for pipelines with bends and junctions

  • Swaminath VenkateswaranEmail author
  • Damien Chablat
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The application of robots for the inspection of pipelines are of greater significance in industries such as nuclear, chemical and sewage. The major problem in the design of these robots lies in the selection of a suitable locomotion principle, selection of an articulation unit that facilitates the robot to pass through pipe bends and management of cables. In this context, the design of a new bio-inspired piping inspection robot that resembles an elephant trunk has been presented. With the help of leg mechanisms and actuators, a caterpillar locomotion is used within this trunk for establishing adaptive contact points with the walls of pipeline. For the passage through bends and junctions, several case studies of existing researches have been taken into account for the design of an articulation unit. Two solutions, (i) a passive tensegrity structure and (ii) an active tensegrity structure have been proposed for the robot to pass through pipe bends and junctions. A detailed design analysis of the passive solution that uses a universal joint has been presented in this article.

Keywords

Piping inspection robot Bio-inspired Elephant trunk Tensegrity structure Universal joint 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roh, S. G., & Choi, H. R. (2005). Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE transactions on robotics, 21(1), 1-17.Google Scholar
  2. 2.
    Hirose, S., Ohno, H., Mitsui, T., & Suyama, K. (1999). Design of in-pipe inspection vehicles for ϕ 25,ϕ 50,ϕ 150 pipes. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on (Vol. 3, pp. 2309–2314). IEEE.Google Scholar
  3. 3.
    Anthierens, C., Ciftci, A., & Betemps, M. (1999). Design of an electro pneumatic micro robot for in-pipe inspection. In Industrial Electronics, 1999. ISIE’99. Proceedings of the IEEE International Symposium on (Vol. 2, pp. 968–972). IEEE.Google Scholar
  4. 4.
    Nayak, A., & Pradhan, S. K. (2014). Design of a new in-pipe inspection robot. Procedia Engineering, 97, 2081-2091.Google Scholar
  5. 5.
    Kwon, Y. S., Lim, H., Jung, E. J., & Yi, B. J. (2008, May). Design and motion planning of a two-moduled indoor pipeline inspection robot. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on (pp. 3998–4004). IEEE.Google Scholar
  6. 6.
    Zhang, Y., Zhang, M., Sun, H., & Jia, Q. (2010, October). Design and motion analysis of a flexible squirm pipe robot. In Intelligent System Design and Engineering Application (ISDEA), 2010 International Conference on (Vol. 1, pp. 527–531). IEEE.Google Scholar
  7. 7.
    Chablat, D., Venkateswaran, S., & Boyer, F. (2018). Mechanical Design Optimization of a Piping Inspection Robot. Procedia CIRP, 70, pp. 307–312.Google Scholar
  8. 8.
    Chablat, D., Venkateswaran, S., & Boyer, F. (2019). Dynamic Model of a Bio-Inspired Robot for Piping Inspection. In ROMANSY 22 - Robot Design, Dynamics and Control (pp. 42–51). Springer, Cham.Google Scholar
  9. 9.
    Henry, R., Chablat, D., Porez, M., Boyer, F., & Kanaan, D. (2014, August). Multiobjective design optimization of the leg mechanism for a piping inspection robot. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V05AT08A001-V05AT08A001).Google Scholar
  10. 10.
    Ryew, S., Baik, S. H., Ryu, S. W., Jung, K. M., Roh, S. G., & Choi, H. R. (2000). In-pipe inspection robot system with active steering mechanism. In Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on (Vol. 3, pp. 1652–1657). IEEE.Google Scholar
  11. 11.
    Jha, R., Chablat, D., Baron, L., Rouillier, F., & Moroz, G. (2018).Workspace, Joint space and Singularities of a family of Delta-Like Robot. Mechanism and Machine Theory, Vol.127, (pp. 73–95).Google Scholar
  12. 12.
    Moroz, G., Chablat, D., Wenger, P., & Rouiller, F. (2010). Cusp points in the parameter space of RPR-2PRR parallel manipulators. In New Trends in Mechanism Science (pp. 29-37). Springer, Dordrecht.Google Scholar
  13. 13.
    Alici, G., & Shirinzadeh, B. (2004). Topology optimisation and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint. Mechanism and Machine Theory, 39(2), 215–235.Google Scholar
  14. 14.
    Bonev, I. A., Zlatanov, D., & Gosselin, C. M. (2002, April). Advantages of the modified Euler angles in the design and control of PKMs. In 2002 Parallel Kinematic Machines International Conference (pp. 171–188).Google Scholar
  15. 15.
    van Riesen, A., Furet, M., Chevallereau, C., & Wenger, P. (2019). Dynamic Analysis and Control of an Antagonistically Actuated Tensegrity Mechanism. In ROMANSY 22-Robot Design, Dynamics and Control (pp. 481–490). Springer, Cham.Google Scholar
  16. 16.
    Yigit, C. B., & Boyraz, P. (2017). Design and Modelling of a Cable-Driven Parallel-Series Hybrid Variable Stiffness Joint Mechanism for Robotics. Mechanical Sciences, 8(1), 65-77.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centrale Nantes, Laboratoire des Sciences du Numérique de Nantes (LS2N)UMR CNRS 6004NantesFrance
  2. 2.CNRS, Laboratoire des Sciences du Numérique de Nantes (LS2N)UMR CNRS 6004NantesFrance

Personalised recommendations