Advertisement

On the Static Performance of Concave Aerostatic Pads

  • Federico Colombo
  • Luigi LentiniEmail author
  • Terenziano Raparelli
  • Vladimir Viktorov
  • Andrea Trivella
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Numerical models have been largely utilized as a valuable tool to investigate the performance of aerostatic pads. These models make it possible to evaluate the effect of different parameters, e.g., supply pressure, orifices diameter and locations. This paper presents a numerical study to investigate to what extent the use of concave surfaces can modify the static performance of aerostatic pads. The study consists in comparing the performance of flat and concave pads in the presence of different supply pressures and maximum depths of concavity.

Keywords

concave profile gas bearing aerostatic pads numerical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lentini, L., Moradi, M., Colombo, F.: A Historical Review of Gas Lubrication: From Reynolds to Active Compensations. Tribology in Industry. 40, 165–182 (2018).  https://doi.org/10.24874/ti.2018.40.02.01CrossRefGoogle Scholar
  2. 2.
    Al-Bender, F.: On the modelling of the dynamic characteristics of aerostatic bearing films: From stability analysis to active compensation. Precision Engineering. 33, 117–126 (2009). doi:http://dx.doi.org/10.1016/j.precisioneng.2008.06.003CrossRefGoogle Scholar
  3. 3.
    Raparelli, T., Viktorov, V., Colombo, F., Lentini, L.: Aerostatic thrust bearings active compensation: Critical review. Precision Engineering. 44, 1–12 (2016). doi:http://dx.doi.org/10.1016/j.precisioneng.2015.11.002CrossRefGoogle Scholar
  4. 4.
    Blondeel, E., Snoeys, R., Devrieze, L.: Dynamic Stability of Externally Pressurized Gas Bearings. Journal of Lubrication Technology. 102, 511–519 (1980)CrossRefGoogle Scholar
  5. 5.
    Richardson, H.H., Cambridge, M.: Static and dynamic characteristics of compensated gas bearings. Trans. of the ASME. 1503–1509 (1958)Google Scholar
  6. 6.
    Roudebush, W.H.: An analysis of the effect of several parameters on the stability of an air lubricated hydrostatic thrust bearing. Technical note / National Advisory Committee for Aeronautics; 4095, Washington (1957)Google Scholar
  7. 7.
    Licht, L., Fuller, D.D., Sternlicht, B.: Self-excited vibrations of an air-lubricated thrust bearing. Trans. ASME. 80, 411–414 (1958)Google Scholar
  8. 8.
    Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: A Lumped Model for Grooved Aerostatic Pad. In: Advances in Service and Industrial Robotics. pp. 678–686. Springer International Publishing (2018)Google Scholar
  9. 9.
    Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Vladimir, V.: A nonlinear lumped parameter model of an externally pressurized rectangular grooved air pad bearing. In: Advances in Italian Mechanism Science. pp. 490–497. Springer (2018)Google Scholar
  10. 10.
    Ghodsiyeh, D., Colombo, F., Raparelli, T., Trivella, A., Viktorov, V.: Diaphragm valve-controlled air thrust bearing. Tribology International. 109, 328–335 (2017)CrossRefGoogle Scholar
  11. 11.
    Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Experimental Identification of an Aerostatic Thrust Bearing. In: Advances in Italian Mechanism Science. pp. 441–448. Springer (2017)Google Scholar
  12. 12.
    Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Actively compensated aerostatic thrust bearing: design, modelling and experimental validation. Meccanica. 1–16 (2017).  https://doi.org/10.1007/s11012-017-0689-yCrossRefGoogle Scholar
  13. 13.
    Aoyama, H., Watanabe, I., Akutsu, K., Shimokohbe, A.: An Ultra Precision Straight Motion System (1st Report). Journal of the Japan Society for Precision Engineering. 54, 558–563 (1988).  https://doi.org/10.2493/jjspe.54.558CrossRefGoogle Scholar
  14. 14.
    Matsumoto, H., Yamaguchi, J., Aoyama, H., Shimokohbe, A.: An Ultra Precision Straight Motion System (2nd Report). Journal of the Japan Society for Precision Engineering. 54, 1945–1950 (1988).  https://doi.org/10.2493/jjspe.54.1945CrossRefGoogle Scholar
  15. 15.
    Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: Dynamic Characterisation of Rectangular Aerostatic Pads with Multiple Inherent Orifices. Tribology Letters. 66, (2018).  https://doi.org/10.1007/s11249-018-1087-x
  16. 16.
    Charki, A., Diop, K., Champmartin, S., Ambari, A.: Numerical simulation and experimental study of thrust air bearings with multiple orifices. International Journal of Mechanical Sciences. 72, 28–38 (2013).  https://doi.org/10.1016/j.ijmecsci.2013.03.006CrossRefGoogle Scholar
  17. 17.
    Belforte, G., Raparelli, T., Viktorov, V., Trivella, a.: Discharge coefficients of orificetype restrictor for aerostatic bearings. Tribology International. 40, 512–521 (2007).  https://doi.org/10.1016/j.triboint.2006.05.003CrossRefGoogle Scholar
  18. 18.
    Peyret, R., Viviand, H.: Pseudo-Unsteady Methods for Inviscid or Viscous Flow Computation. In: Casci, C. and Bruno, C. (eds.) Recent Advances in the Aerospace Sciences: In Honor of Luigi Crocco on His Seventy-fifth Birthday. pp. 41–71. Springer US, Boston, MA (1985)CrossRefGoogle Scholar
  19. 19.
    Holster, P.L., Jacobs, J.A.H.: Theoretical analysis and experimental verification on the static properties of externally pressurized air-bearing pads with load compensation. Tribology International. 20, 276–289 (1987). doi:http://dx.doi.org/10.1016/0301-679X(87)90028-4CrossRefGoogle Scholar
  20. 20.
    Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: Dynamic model of a grooved thrust bearing: Numerical model and experimental validation. Presented at the AIMETA 2017 - Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Federico Colombo
    • 1
  • Luigi Lentini
    • 1
    Email author
  • Terenziano Raparelli
    • 1
  • Vladimir Viktorov
    • 1
  • Andrea Trivella
    • 1
  1. 1.Politecnico di TorinoTurin (TO)Italy

Personalised recommendations