Advertisement

Angular stroke requirements for solar tracking azimuthal mechanism at any latitude

  • Moldovan MacedonEmail author
  • Visa Ion
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

To be installed at any latitude from Northern and Southern Hemisphere, a solar tracking mechanism must perform the necessary angular strokes according to the latitude. For a dual-axis solar tracking system azimuthal type, the angular stroke limits depend on the latitude φ and Earth declination angle δ. In the paper, the analytical and graphical dependences for altitude (α) and azimuth (ψ) angles are detailed. Daily variations, maximum daily values during a year for different latitudes in the Northern and Southern Hemisphere and the yearly limits by max/min values at all latitudes for altitude and azimuth angles are calculated and presented in the paper. Based on these variations and limits, the mechanism type (linkage, gears, cams etc.) and the appropriate control algorithms can be selected.

Keywords

Azimuthal Solar Tracking System Angular Stroke Latitude 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mirdanies, M.: Astronomy algorithm simulation for two degrees of freedom of solar tracking mechanism using C language. Energy Procedia 68, 60 - 67 (2015).CrossRefGoogle Scholar
  2. 2.
    Sidek, MHM., Azis, N., Hasan WZW., Ab Kadir, MZA., Shafie, S., Radzi, MAM.: Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy 124, 160-170 (2017).CrossRefGoogle Scholar
  3. 3.
    Fernández-Ahumada, LM., Casares, FJ., Ramirez-Faz, J., Lopez-Luque, R.: Mathematical study of the movement of solar tracking systems based on rational models. Solar Energy 150, 20-29 (2017).CrossRefGoogle Scholar
  4. 4.
    Sungur, C.: Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey. Renewable Energy 34, 1119-1125 (2009).CrossRefGoogle Scholar
  5. 5.
    Quaglia, G., Maurino, S. L.: A new solar-tracking mechanism based on four-bar linkages. In: Proceedings of the Institution of Mechanical Engineers: J. of Mech. Eng. Sc. (2016).Google Scholar
  6. 6.
    Antonanzas, J., Urraca, R., Martinez-de-Pison, FJ., Antonanzas, F.: Optimal solar tracking strategy to increase irradiance in the plane of array under cloudy conditions: A study across Europe. Solar Energy 163, 122-130 (2018).CrossRefGoogle Scholar
  7. 7.
    Moldovan, M., Visa, I., Neagoe, M.: Optimising the strokes and loads of the linear actuators in a two degrees of freedom linkage used in solar tracking systems. In: Proceedings of the 14th IFToMM World Congress, Taipei, Taiwan (2015).Google Scholar
  8. 8.
    Visa I., Neagoe M., Moldovan M., Comsit M.: Solar Tracking Parallel Linkage Applicable for All Latitudes. In: Doroftei I., Oprisan C., Pisla D., Lovasz E. (eds.) New Advances in Mechanism and Machine Science 57, 3-11. Springer, Cham (2018).Google Scholar
  9. 9.
    Bahrami, A., Okoye, CO., Atikol, U.: The effect of latitude on the performance of different solar trackers in Europe and Africa. Applied Energy 177, 896-906 (2016).CrossRefGoogle Scholar
  10. 10.
    Bahrami, A., Okoye, CO.: The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere. Renewable and Sustainable Energy Reviews 97, 138-151 (2018).CrossRefGoogle Scholar
  11. 11.
    Hafez, A.Z., Yousef A.M., Harag, NM.: Solar tracking systems: Technologies and trackers drive types – A review. Renewable and Sustainable Energy Reviews 91, 754–782 (2018).CrossRefGoogle Scholar
  12. 12.
    Visa, I. et al.: The Role of Mechanisms in Sustainable Energy Systems. Transilvania University of Brasov Publishing House, Brasov, (2015).Google Scholar
  13. 13.
    Kalogirou, S.A.: Solar energy engineering. Processes and systems. Elsevier, US (2013).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Transilvania University of Brasov, Renewable Energy Systems and Recycling Research CentreBrasovRomania

Personalised recommendations