Parametric Euler-Savary Equations For Spherical Instantaneous Kinematics

  • Osman AcarEmail author
  • Ziya Şaka
  • Ziya Özçelik
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


The paper presents a parametric form of Euler-Savary equations for spherical instantaneous kinematics. The formulation procedures are explained for Ball and Ball-Burmester points. The parametric forms of the equations are used to determine the coordinates of fixed joints of various four bar mechanisms for validation.


Euler-Savary equation Parametric equation Ball-Burmester points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sandor, G., et al., New complex-number forms of the Euler-Savary equation in a computer-oriented treatment of planar path-curvature theory for higher-pair rolling contact. Journal of Mechanical Design, 1982. 104(1): p. 227-232.Google Scholar
  2. 2.
    Sandor, G.N., A.G. Erdman, and E. Raghavacharyulu, Double-valued solutions of the Euler-Savary Equation and its counterpart in bobillier’s construction. Mechanism and machine theory, 1985. 20(2): p. 145-148.CrossRefGoogle Scholar
  3. 3.
    Sandor, G.N., Y. Xu, and T.-C. Weng, A graphical method for solving the Euler- Savary equation. Mechanism and Machine Theory, 1990. 25(2): p. 141-147.CrossRefGoogle Scholar
  4. 4.
    Ting, K.-L. and S. Wang, Fourth and fifth order double Burmester points and the highest attainable order of straight lines. Journal of Mechanical Design, 1991. 113(3): p. 213-219.CrossRefGoogle Scholar
  5. 5.
    Wang, D., J. Liu, and D. Xiao, A unified curvature theory in kinematic geometry of mechanism. Science in China Series E: Technological Sciences, 1998. 41(2): p. 196-202.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dooner, D.B. and M.W. Griffis, On spatial Euler–Savary equations for envelopes. Journal of Mechanical Design, 2007. 129(8): p. 865-875.CrossRefGoogle Scholar
  7. 7.
    Masal, M., M. Tosun, and A.Z. Pirdal, Euler savary formula for the one parameter motions in the complex plane C. International Journal of Physical Sciences, 2010. 5(1): p. 6-10.Google Scholar
  8. 8.
    Pereira, N.T.S. and S. Ersoy, Elliptical harmonic motion and Euler–Savary formula. Advances in Applied Clifford Algebras, 2016. 26(2): p. 731-755.Google Scholar
  9. 9.
    Gürses, N., M. Akbiyik, and S. Yüce, One-Parameter Homothetic Motions and Euler-Savary Formula in Generalized Complex Number Plane $${\mathbb {C} _ {J}} $$ C J. Advances in Applied Clifford Algebras, 2016. 26(1): p. 115-136.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Akbıyık, M. and S. Yüce, Euler Savary’s Formula On Complex Plane C. Applied Mathematics E-Notes, 2016. 16: p. 65-71.Google Scholar
  11. 11.
    Fu, T.-T. and C.-H. Chiang, Simulating a given spherical motion by the polode method. Mechanism and machine theory, 1994. 29(2): p. 237-249.CrossRefGoogle Scholar
  12. 12.
    Kamphuis, H., Application of spherical instantaneous kinematics to the spherical slider-crank mechanism. Journal of Mechanisms, 1969. 4(1): p. 43-56.CrossRefGoogle Scholar
  13. 13.
    CH, C., Kinematics of spherical mechanisms. . Krieger Publishing, Melbourne, 2000Google Scholar
  14. 14.
    Özçelik, Z. and Z. Şaka, Ball and Burmester points in spherical kinematics and their special cases. Forschung im Ingenieurwesen, 2010. 74(2): p. 111-122.CrossRefGoogle Scholar
  15. 15.
    Özçelik, Z. and Z. Şaka, On the Derivation of the Coordinates of Coupler Points in Spherical Mechanisms.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Selçuk UniversitySelçuklu, KonyaTurkey
  2. 2.Konya Technical UniversitySelçuklu, KonyaTurkey
  3. 3.Necmettin Erbakan UniversitySeydişehir, KonyaTurkey

Personalised recommendations