Smog and bad energy conversion. Can new technologies become our allies in this struggle?

  • Jan KicińskiEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


Smog is the result of bad energy conversion and so-called energy poverty. This problem becomes particularly severe in Poland. The article presents proposals for solving the smog problem through the use of anti-smog technologies developed at the IMP PAN in Gdańsk. The concept is based on the use of the low power electrostatic filter that can cooperate with old boilers of classes lower than 5, and in the perspective, of introducing a boiler (based on its own solution) with ultra-low emissions. In the final version the goal lies in equipping the boiler with a source of electrical generation (based on microturbines). Such a cogeneration source could be an important element of distributed power generation.


Energy Conversion Anti-smog Technologies Distributed Power Generation Natural Environment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank his closest colleagues at the IMP PAN in Gdansk: Dr. M. Lackowski, M. Dors, D. Kardaś, A. Jaworek, J. Podliński and Dr. G. Żywica, for their work on the subject and materials provided.


  1. 1.
    Kiciński, J.: Do we have a chance for small-scale energy generation? The examples of technologies and devices for distributed energy systems in micro & small scale in Poland. Bulletin of the Polish Academy of Sciences 61(4), 749-756 (2013).Google Scholar
  2. 2.
    Kiciński, J., Żywica, G.: Steam Microturbines in Distributed Cogeneration. Springer (2014).Google Scholar
  3. 3.
    Kiciński, J.: Quo Vadis Energetyko? Od energetyki wielkoskalowej do rozproszonej. A co dla Polski? Nowa Energia 2(62), 61-70 (2018).Google Scholar
  4. 4.
    Lackowski, M., Karwacki, J., Przybyliński, T., Heda, Ł., Kluska, J., Cenian, A., Lampart, P.: Pomiar charakterystyk instalacji kogeneracyjnej pracującej w układzie ze zgazowarką biomasy w Szepietowie. In: Kiciński J., Cenian A., Lampart P. (eds.) Układy zgazowania biomasy i odpadów rolniczych, przemysłowych i miejskich, 139-166, Wyd. IMP PAN, Gdansk (2016).Google Scholar
  5. 5.
    Podliński, J., Niewulis, A., Mizeraczyk, J.: Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator. Journal of Electrostatics 67(2-3), 99–104 (2009).CrossRefGoogle Scholar
  6. 6.
    Kardaś D., Żywica G., Klonowicz P.: Mała energetyka domowa. Nowa Energia 2 (2017).Google Scholar
  7. 7.
    Kardaś D., Turzyński T., Ronewicz K.: Procesy spalania i wymiany ciepła w kotłach nabiomasę. Wyd. IMP PAN, Gdańsk (2015).Google Scholar
  8. 8.
    Global Compact Network Poland, Sustainable cities: Living in a healthy atmosphere. Ambient air quality in Poland against the background of the European Union, p. 43, Warsaw (2015).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Fluid-Flow Machinery, Polish Academy of Sciences (IMP PAN)GdańskPoland

Personalised recommendations