Advertisement

Stable internal dynamics of a legged hopping model with locomotion speed control

  • Ambrus Zelei
  • László BencsikEmail author
  • Tamás Insperger
  • Gábor Stépán
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The dynamic analysis of legged locomotion typically involves issues related to multibody dynamics, underactuation, motion planning and stability. In addition to biomechanics of humans and animals, the dynamic analysis of legged locomotion is also an important issue in the control development of pedal robots. For these robots, stable internal dynamics has to be guaranteed in order to achieve reliable control.

The goal of this study is the conceptual proof of a direct eigenvalue analysis method for the internal dynamics of legged robotic locomotors. The starting point is a planar model of hopping, which provides stable periodic motion without the feedback control of the locomotion speed. In the present study, we extend the existing model with a controller whose goal is to zero the virtual constraint related to the prescribed locomotion speed. We expect that the locomotion speed can be set arbitrarily in a certain range, where the internal dynamics is stable. The stability of the internal dynamics is analyzed using a recently published method based on direct eigenvalue analysis. Although, this method is not usual in control theory, it can efficiently be applied for multibody systems.

Keywords

Pedal locomotion multibody dynamics underactuated systems zero dynamics piecewise smooth dynamical systems periodic orbits eigenvalue analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. F. Novacheck. The biomechanics of running. Gait and Posture, 7:77–95, 1998.Google Scholar
  2. 2.
    A. Seyfarth, M. Günther, and R. Blickhan. Stable operation of an elastic threesegment leg. Biol Cybern., 84(5):365–382, 2001.CrossRefGoogle Scholar
  3. 3.
    P. T. Piiroinen and H. J. Dankowicz. Low-cost control of repetitive gait in passive bipedal walkers. International Journal of Bifurcation and Chaos, 15(6):1959–1973, 2005. doi: https://doi.org/10.1142/S0218127405013083.MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Holmes, R. J. Full, D. E. Koditschek, and J. Guckenheimer. The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Rev., 48(2):207–304, 2006.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, and et al. Feedback control of dynamic bipedal robot locomotion, 2007.Google Scholar
  6. 6.
    D. E. Lieberman, M. Venkadesan, W. A. Werbel, A. I. Daoud, S. D’Andrea, I. Davis I., I. S. Mang’Eni, and Y. Pitsiladis. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Naure, Biomechanics, 463(8723):531–535, 2010.CrossRefGoogle Scholar
  7. 7.
    J. Kövecses and L. L. Kovács. Foot impact in different modes of running: mechanisms and energy transfer. Procedia IUTAM, 2:101–108, Symposium on Human Body Dynamics, 2011.Google Scholar
  8. 8.
    J. M. Font-Llagunes, R. Pamies-Vila, and J. Kövecses. Configuration-dependent performance indicators for the analysis of foot impact in running gait. In Proceedings of ECCOMAS Thematic Conference on Multibody Dynamics, Multibody Dynamics 2013, Book of Abstracts, pages 31–32, Zagreb, Croatia, 1-4 July.Google Scholar
  9. 9.
    A. Zelei, B. Krauskopf, and T. Insperger. Control optimization for a threesegmented hopping leg model of human locomotion. In DSTA 2017Vibration, Control and Stability of Dynamical Systems, pages 599–610, Lodz, Poland, 11-14, December 2017.Google Scholar
  10. 10.
    J. J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1995.Google Scholar
  11. 11.
    A. Isidori. Nonlinear control systems, 3rd edition. Springer-Verlag, London, 1995.Google Scholar
  12. 12.
    L. Bencsik, L.L. Kovács, and A. Zelei. Stabilization of internal dynamics of underactuated systems by periodic servo-constraints. International Journal of Structural Stability and Dynamics, 2017. 14 pages, paper id: 1740004.Google Scholar
  13. 13.
    R. I. Leine and D. H. van Campen. Discontinuous bifurcations of periodic solutions. Mathematical and Computer Modelling, 36(3):259–273, 2002. doi: https://doi.org/10.1016/S0895-7177(02)00124-3.MathSciNetCrossRefGoogle Scholar
  14. 14.
    W. B. Bequette. Process control: Modeling, design, and simulation. Prentice Hall Professional, New Jersey, 2003.Google Scholar
  15. 15.
    J. Kövecses, J.-C. Piedoboeuf, and C. Lange. Dynamic modeling and simulation of constrained robotic systems. IEEE/ASME Transactions on Mechatronics, 2(2):165–177, 2003.CrossRefGoogle Scholar
  16. 16.
    H. J. Dankowicz and P. T. Piiroinen. Exploiting discontinuities for stabilization of recurrent motions. Dynamical Systems, 17(4):317–342, 2002. doi: https://doi.org/10.1080/1468936021000041663.MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. L. Petzold. Recent developments in the numerical solution of differential/algebraic systems. Computer Methods in Applied Mechanics and Engineering, 36(6):77–89, 2002.MathSciNetCrossRefGoogle Scholar
  18. 18.
    V. I. Kirgetov. The motion of controlled mechanical systems with prescribed constraints (servo constraints). Prikl. Mat. Mekh., 31(3):433–447, 1967.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Isidori A. Nonlinear Control Systems. 3rd ed. Springer Verlag, 1995.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ambrus Zelei
    • 1
    • 2
  • László Bencsik
    • 1
    • 2
    Email author
  • Tamás Insperger
    • 2
    • 3
  • Gábor Stépán
    • 1
    • 3
  1. 1.MTA-BME Research Group on Dynamics of Machines and VehiclesBudapestHungary
  2. 2.MTA-BME Lendület Human Balancing Research GroupBudapestHungary
  3. 3.Department of Applied MechanicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations