Advertisement

An Improved Principal Coordinate Frame for use with Spatial Rigid Body Displacement Metrics

  • Pierre LarochelleEmail author
  • Venkatesh Venkataramanujam
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper presents an improved definition of a coordinate frame, entitled the principal frame (PF), that is useful for metric calculations on spatial rigid-body displacements. For a finite set of displacements a point mass model of the moving rigid-body is employed. Next, we compute the centroid and principal axes associated with the point mass locations. The PF is then determined from the principal axes. Here, a new algorithm for determining the PF from the principal axes is proposed. The PF is invariant with respect to the choice of the fixed coordinate frame as well as the system of units used; therefore, the PF is useful for left invariant metric computations. An example including a set of 10 spatial rigid-body displacements is presented to demonstrate the application and utility of the PF.

Keywords

displacement metrics rigid-body displacements SE(3) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We gratefully acknowledge the insightful discussions about metrics and the principal frame PF with Michal Juránek of Photoneo S.R.O. (https://www.photoneo.com). This work builds upon preliminary results reported in Refs. [1, 25, 2, 26].

References

  1. 1.
    Venkataramanujam, V., Larochelle, P.: A Coordinate Frame Useful for Rigid-Body Displacement Metrics. ASME J. Mechanisms and Robotics. vol. 2, no. 4 (2010). doi: https://doi.org/10.1115/1.4002245CrossRefGoogle Scholar
  2. 2.
    Larochelle, P., Murray, A., Angeles, J.: A Distance Metric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition. ASME J. Mechanical Design. vol. 129, no. 8, pp. 805-812 (2006). doi: https://doi.org/10.1115/1.2735640CrossRefGoogle Scholar
  3. 3.
    Fanghella, P., Galletti, C.: Metric Relations and Displacement Groups in Mechanism and Robot Kinematics. ASME J. Mechanical Design. vol. 117, no. 3 (1995). doi: https://doi.org/10.1115/1.2826702zbMATHCrossRefGoogle Scholar
  4. 4.
    Zefran, M., Kumar, V., Croke, C.: Metrics and Connections for Rigid-Body Kinematics. The Int. J. of Robotics Research. vol. 18, no. 2 (1999). doi: https://doi.org/10.1177/027836499901800208CrossRefGoogle Scholar
  5. 5.
    Park, F., Brocket, R.: Kinematic Dexterity of Robotic Mechanisms. The Int. J. of Robotics Research. vol. 13, no. 1 (1994). doi: https://doi.org/10.1177/027836499401300101CrossRefGoogle Scholar
  6. 6.
    Lin, Q., Burdick, J.: Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies. The Int. J. of Robotics Research. vol. 19, no. 6 (2000). doi:  https://doi.org/10.1177/027836490001900605CrossRefGoogle Scholar
  7. 7.
    Bobrow, J., Park, F.: On Computing Exact Gradients for Rigid Body Guidance Using Screw Parameters. In: Proceedings of the ASME Design Engineering Technical Conferences, vol. 1, pp. 839-844. ASME Press, New York (1995).Google Scholar
  8. 8.
    Chirikjian, G.: Convolution Metrics for Rigid Body Motion. In: Proceedings of the ASME Design Engineering Technical Conferences. ASME Press, New York (1998).Google Scholar
  9. 9.
    Park, F.: Distance Metrics on the Rigid-Body Motions with Application to Mechanism Design. ASME J. Mechanical Design. vol. 117, no. 1, pp. 48-54 (1995). doi: https://doi.org/10.1115/1.2826116CrossRefGoogle Scholar
  10. 10.
    Chirikjian, G., Zhou, S.: Metrics on Motion and Deformation of Solid Models. ASME J. Mechanical Design. vol. 120, no. 2, pp. 252-261 (1998). doi: https://doi.org/10.1115/1.2826966CrossRefGoogle Scholar
  11. 11.
    Martinez, J., Duffy, J.: On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies. ASME J. Mechanical Design. vol. 117, no. 1, pp. 44-47 (1995). doi: https://doi.org/10.1115/1.2826115CrossRefGoogle Scholar
  12. 12.
    Larochelle, P., McCarthy, J.: Planar Motion Synthesis using an Approximate Bi-Invariant Metric. ASME J. Mechanical Design. vol. 117, no. 4, pp. 646-651 (1995). doi: https://doi.org/10.1115/1.2826735CrossRefGoogle Scholar
  13. 13.
    Etzel, C., McCarthy, J.: A Metric for Spatial Displacements Using Biquaternions on SO(4). In: Proceedings of IEEE International Conference on Robotics and Automation. vol. 4, pp. 3185-3190. IEEE International (1996). doi: https://doi.org/10.1109/ROBOT.1996.509197
  14. 14.
    Gupta, K.: Measures of Positional Error for a Rigid Body. ASME J. Mechanical Design. vol. 119, no. 3, pp. 346-348 (1997).CrossRefGoogle Scholar
  15. 15.
    Tse, D., Larochelle, P.: Approximating Spatial Locations With Spherical Orientations for Spherical Mechanism Design. ASME J. Mechanical Design. vol. 122, no. 4, pp. 457-463 (2000). doi: https://doi.org/10.1115/1.1289139CrossRefGoogle Scholar
  16. 16.
    Eberharter, J., Ravani, B.: Local Metrics for Rigid Body Displacements. ASME J. Mechanical Design. vol. 126, no. 5, pp. 805-812 (2004). doi: https://doi.org/10.1115/1.1767816CrossRefGoogle Scholar
  17. 17.
    Kazerounian, K., Rastegar, J.: Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements. In: Proceedings of the ASME Design Engineering Technical Conferences, vol. 47, pp. 271-275. ASME Press, New York (1992).Google Scholar
  18. 18.
    Sharf, I., Wolf, A., Rubin, M.: Arithmetic and Geometric Solutions for Average Rigid-Body Rotation. Mechanism and Machine Theory. vol. 45, no. 9, pp. 1239-1251 (2010). doi: https://doi.org/10.1016/j.mechmachtheory.2010.05.002zbMATHCrossRefGoogle Scholar
  19. 19.
    Angeles, J.: Is there a Characteristic Length of a Rigid-Body Displacement?. Mechanism and Machine Theory. vol. 41, no. 8, pp. 884-896 (2006). doi: https://doi.org/10.1016/j.mechmachtheory.2006.03.010zbMATHCrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Ting, K.: Point-Line Distance Under Riemannian Metrics. ASME J.Mechanical Design. vol. 130, no. 9, pp. 805-812 (2008). doi: https://doi.org/10.1115/1.294330110
  21. 21.
    Di Gregorio, R.: A Novel Point of View to Define the Distance between Two Rigid-Body Poses. In: Lenarčič J., Wenger P. (eds) Advances in Robot Kinematics: Analysis and Design. Springer, Dordrecht (2008). doi: https://doi.org/10.1007/978-1-4020-8600-7_38CrossRefGoogle Scholar
  22. 22.
    Ravani, B., Roth, B.: Motion Synthesis Using Kinematic Mappings. ASME J.Mech., Trans., and Auto. vol. 105, no. 3, pp. 460-467 (1983). doi: https://doi.org/10.1115/1.3267382CrossRefGoogle Scholar
  23. 23.
    Horn, B.: Closed-Form Solution of Absolute Orientation using Unit Quaternions. J. of the Optical Society of America A. vol. 4, no. 4, pp. 629-642 (1987). doi: https://doi.org/10.1364/JOSAA.4.000629CrossRefGoogle Scholar
  24. 24.
    Shoemake, K., Duff, T.: Matrix Animation and Polar Decomposition. In: Proceedings of Graphics Interface ‘92, pp. 258-264 (1992). doi: https://doi.org/10.20380/GI1992.30
  25. 25.
    Venkataramanujam, V., Larochelle, P.: A Displacement Metric for Finite Sets of Rigid Body Displacements. In: Proceedings of the ASME Design Engineering Technical Conferences, vol. 2, pp. 1463-1469. ASME Press, New York (2008). doi: https://doi.org/10.1115/DETC2008-49554
  26. 26.
    Venkataramanujam, V.: Approximate Motion Synthesis of RoboticMechanical Systems. Masters thesis, Florida Institute of Technology (2007)Google Scholar
  27. 27.
    Larochelle, P.: A Polar Decomposition Based Displacement Metric for a Finite Region of SE(n). In: Lennarčič J., Roth B. (eds) Advances in Robot Kinematics. Springer, Dordrecht (2006). doi: https://doi.org/10.1007/978-1-4020-4941-5_4
  28. 28.
    Schilling, R., Lee, H.: Engineering Analysis - A Vector Space Approach. Wiley, New York (2000). isbn:978-0471827603Google Scholar
  29. 29.
    Greenwood, D.: Advanced Dynamics. Cambridge University Press (2006). isbn: 978-0521029933Google Scholar
  30. 30.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems. 4th edition. Springer International Publishing (2014). isbn:978-3-319-01850-8Google Scholar
  31. 31.
    Al-Widyan, K., Cervantes-Sánchez, J., Angeles, J.: A Numerically Robust Algorithm to Solve the Five-Pose Burmester Problem. In: Proceedings of the ASME Design Engineering Technical Conferences. ASME Press, New York (2002).Google Scholar
  32. 32.
    Larochelle, P.: On the Geometry of Approximate Bi-Invariant Projective Displacement Metrics In: Proceedings of the World Congress on the Theory of Machines and Mechanisms (1999).Google Scholar
  33. 33.
    Higham, N.: Computing the Polar Decomposition|with Applications. SIAM Journal on Scientific and Statistical Computing. vol. 7, no. 4, pp. 1160-1174 (1995). doi: https://doi.org/10.1137/0907079MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Dubrulle, A.: An Optimum Iteration for the Matrix Polar Decomposition In: Electronic Transactions on Numerical Analysis (2001). vol. 8, pp. 21-25. (2001).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.South Dakota School of Mines & TechnologyRapid CityUSA
  2. 2.SoftBank RoboticsBostonUSA

Personalised recommendations