The rigid finite element and segment methods in dynamic analysis of risers

  • Iwona Adamiec-WójcikEmail author
  • Lucyna Brzozowska
  • Stanisław Wojciech
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


Dynamic analysis of risers used for transporting hydrocarbons from the bottom of the sea to tanks placed on vessels or platforms requires consideration of the influence of the water environment. Risers are long pipes (as long as 3000 m) with diameters of 0.3-0.6 m and with dominant bending flexibility; thus the deflections may be large. Appropriate discretisation, and consideration of the influence of the sea floor, waves, currents, drag and buoyancy forces, are essential for numerical static and dynamic analysis of risers. The paper presents riser models obtained by means of the segment method with joint (JSM) and absolute (ASM) coordinates as well as by means of the rigid finite element method (RFEM), together with the applications of the models. Aspects concerned with numerical effectiveness of these methods in dynamic analysis of risers are discussed.


Segment method Joint coordinates Absolute coordinates Rigid finite element method Dynamic analysis of risers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chatjigeorgiou, I., K.: A finite difference formulation for the linear and nonlinear dynamics of 2D catenary risers. Ocean Engineering 35, 616-636 (2008)CrossRefGoogle Scholar
  2. 2.
    Wang, S.-W., Xu, X.-S., Yao, B.-H., Lian, L.: A Finite difference approximation for dynamic calculation of vertical free hanging slender risers in re-entry application. China Ocean Engineering 26, 637-652 (2012)CrossRefGoogle Scholar
  3. 3.
    Chi, Y.T., Varyani, K.S.: An absolute coordinate formulation for three-dimensional flexible pipe analysis. Ocean Engineering 33, 23-58 (2006)CrossRefGoogle Scholar
  4. 4.
    Wang, P.-H., Fung, R.-F., Lee, M.-J.: Finite element analysis of three-dimensional underwater cable with time-dependent length. Journal of Sound and Vibration. 209, 223-249 (2012)CrossRefGoogle Scholar
  5. 5.
    Chai, Y.T., Varyani, K.S., Barltrop, N.D.P.: Three-dimensional lumped mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect. Ocean Engineering 29, 1503-1525 (2002)CrossRefGoogle Scholar
  6. 6.
    Sun, L., Qi, B.: Global analysis of a flexible riser. Journal of Marine Science and Application 10, 478-484 (2011)CrossRefGoogle Scholar
  7. 7.
    Connely, J.,D., Huston, R.L.: The dynamics of flexible multibody systems: A finite segment approach-I. Theoretical aspects. Computer & Structures 50, 252-258 (1994)Google Scholar
  8. 8.
    Xu, X.-S., Yao, B.-H., Ren, P.: Dynamics calculation for underwater moving slender bodies based of flexible segment model. Ocean Engineering 57, 111-127 (2013)CrossRefGoogle Scholar
  9. 9.
    Adamiec-Wójcik, I., Wojciech, S.: Application of the finite segment method to stabilisation of the force in a riser connection with a wellhead. Nonlinear Dyn. 93, 1853-1874 (2018)CrossRefGoogle Scholar
  10. 10.
    Adamiec-Wójcik, I., Brzozowska, L., Drąg. Ł.: An analysis of dynamics of risers during vessel motion by means of the rigid finite element method. Ocean Engineering 106, 102-114 (2015)CrossRefGoogle Scholar
  11. 11.
    Drąg, Ł.: Application of dynamic optimisation to the trajectory of a cable-suspended load. Nonlinear Dynamics 84, 1637-1653 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Adamiec-Wójcik. I., Drąg, Ł., Wojciech, S.: A New Approach to the Rigid Finite Element Method in Modeling Spatial Slender Systems. International Journal of Structural Stability and Dynamics, 18(1) 1850017 (27 pages) (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wittbrodt, E., Adamiec-Wójcik, I., Wojciech, S.: Dynamics of flexible multibody systems. Rigid finite element method. Springer, Berlin Heidelberg (2006)Google Scholar
  14. 14.
    Jensen, G.A., Safstrom. N., Nguyen. T.D., Fossen. T.I.: A nonlinear PDE formulation for offshore vessel pipeline installation. Ocean Engineering 37, 365-377 (2010)CrossRefGoogle Scholar
  15. 15.
    Adamiec-Wójcik, I., Awrejcewicz, J., Drąg, Ł., Wojciech, S.: Compensation of top horizontal displacements of a riser. Meccanica 51, 2753–2762 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kaewunruen, S., McCarthy, T., Leklong, J., Chucheepsakul, S.: Influence of joint stiffness on the free vibrations of a marine riser conveying fluid. In Proc. of the Eight ISOPE Pacific/Asia Offshore Mechanics Symposium, 113-120, ISOPE, Bangkok, (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Bielsko-BialaBielsko-BiałaPoland

Personalised recommendations