Advertisement

Multi-Mode Motion System Based on a Multistable Tensegrity Structure

  • P. SchorrEmail author
  • V. Böhm
  • G. Stépán
  • L. Zentner
  • K. Zimmermann
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper presents a multi-mode motion system based on a compliant tensegrity structure with multiple stable equilibrium configurations. The motion system is in contact to an arbitrarily shaped rigid ground due to gravity. The movement is realized by changing successively between different equilibrium states. Depending on the strategy of changing the equilibrium configuration, different motion types occur. The reachable area of the motion system can be enlarged by adapting the motion type depending on the given environmental characteristics. Furthermore, the efficiency of the motion can be improved by choosing the most suitable motion mode. Theoretical studies regarding the change of the equilibrium states are introduced. Moreover, simulation results for the different motion modes tilting, vibration driven and jumping are illustrated. The resulting motion characteristics emphasize the advantageous adaptability of the motion system regarding to varying environmental conditions.

Keywords

multimodal motion tensegrity bifurcation analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft (DFG project BO4114/2-2).

References

  1. 1.
    Liu, C.-H., Lin, M.-H., Huang, Y.-C., Pai, T.-Y., Wang, C.-M.: The development of a multi-legged robot using eight-bar linkages as leg mechanisms with switchable modes for walking and stair climbing. In: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), 2017, pp. 103–108. doi: https://doi.org/10.1109/ICCAR.2017.7942669
  2. 2.
    Takuma, T., Hayashi, S., Hosoda, K.: 3D bipedal robot with tunable leg compliance mechanism for multi-modal locomotion. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 1097–1102. doi: https://doi.org/10.1109/IROS.2008.4650807
  3. 3.
    Daler, L., Lecoeur, J., Hählen, P.B., Floreano, D.: A flying robot with adaptive morphology for multi-modal locomotion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 1361–1366. doi: https://doi.org/10.1109/IROS.2013.6696526
  4. 4.
    Yu, J., Ding, R., Yang, Q., Tan, M., Wang, W., Zhang, J.: On a Bio-inspired Amphibious Robot Capable of Multimodal Motion. IEEE/ASME Transactions on Mechatronics 17, 847-856 (2012). doi: https://doi.org/10.1109/TMECH.2011.2132732CrossRefGoogle Scholar
  5. 5.
    Hu, W., Lum, G.Z., Mastrangeli, M., Sitti, M.: Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018). doi: https://doi.org/10.1038/nature25443CrossRefGoogle Scholar
  6. 6.
    Zappetti, D., Mintchev, S., Shintake, J., Floreano, D.: Bio-inspired Tensegrity Soft Modular Robots. In: Biomimetic and Biohybrid Systems, 2017, pp. 497–508. doi: https://doi.org/10.1007/978-3-319-63537-8_42CrossRefGoogle Scholar
  7. 7.
    Sabelhaus, A.P., Bruce, J., Caluwaerts, K., Manovi, P., Firoozi, R.F., Dobi, S., Agogino, A.M., SunSpiral, V.: System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 2867–2873. doi: https://doi.org/10.1109/ICRA.2015.7139590
  8. 8.
    Kaufhold, T., Schale, F., Böhm, V., Zimmermann, K.: Indoor locomotion experiments of a spherical mobile robot based on a tensegrity structure with curved compressed members. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 523–528. doi: https://doi.org/10.1109/AIM.2017.8014070
  9. 9.
    Böhm, V., Zeidis, I., Zimmermann, K.: On a Bio-inspired An approach to the dynamics and control of a planar tensegrity structure with application in locomotion systems. International Journal of Dynamics and Control 3, 41–49 (2015). doi: https://doi.org/10.1007/s40435-014-0067-8CrossRefGoogle Scholar
  10. 10.
    Rieffel, J., Mouret, J.-P.: Adaptive and Resilient Soft Tensegrity Robots. Soft Robotics 5, 318–329 (2018). doi: https://doi.org/10.1089/soro.2017.0066CrossRefGoogle Scholar
  11. 11.
    Schorr, P., Böhm, V., Zentner, l., Zimmermann, K.: Motion characteristics of a vibration driven mobile tensegrity structure with multiple stable equilibrium states. Journal of Sound and Vibration 437, 198–208 (2018). doi: https://doi.org/10.1016/j.jsv.2018.09.019CrossRefGoogle Scholar
  12. 12.
    Böhm, V.: Mechanics of tensegrity structures and their use in mobile robotics. Habilitation thesis, Ilmenau University of Technology, 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. Schorr
    • 1
    • 2
    Email author
  • V. Böhm
    • 2
  • G. Stépán
    • 3
  • L. Zentner
    • 1
  • K. Zimmermann
    • 1
  1. 1.Ilmenau University of TechnologyIlmenauGermany
  2. 2.Ostbayerische Technische Hochschule RegensburgRegenburgGermany
  3. 3.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations