Advertisement

An Experimental Study on the Effect of Temperature on Acoustic Emission Characteristics in Metallic Structures

  • Phong B. DaoEmail author
  • Marek Fortuna
  • Wieslaw J. Staszewski
  • Tadeusz Uhl
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper investigates the effect of temperature on the basic characteristics (i.e. peak levels, ring-down counts, and energies) of acoustic emission (AE) signals in metallic structures. The experimental AE data were acquired from a series of pencil-lead breakage (PLB) tests performed on a steel plate for two temperature values, i.e. 30°C and 70°C. The temperature influence was introduced by placing the test specimen in a controlled environmental chamber. The results have demonstrated the strong influence of temperature conditions on all characteristics of AE signals.

Keywords

Acoustic emission Temperature effects Ring-down count Pencil-lead breakage (PLB) test Steel plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by research funding from the Department of Robotics and Mechatronics at the AGH University of Science and Technology.

References

  1. 1.
    Kishi, T., Ohtsu, M., Yuyama, S. (eds.): Acoustic Emission – Beyond the Millenium. El-sevier, Amsterdam (2000).Google Scholar
  2. 2.
    Hardy Jr, H.R.: Acoustic Emission Microseismic Activity, vol. 1: Principles, Techniques and Geotechnical Applications. Taylor & Francis, London (2003).Google Scholar
  3. 3.
    Miller, R.K., Hill, E.v.K. (eds.): Nondestructive Testing Handbook. 3rd edn, vol. 6: Acoustic Emission Testing. American Society for Nondestructive Testing, Columbus, Ohio, United States (2005).Google Scholar
  4. 4.
    Grosse, C.U., Ohtsu, M. (eds.): Acoustic Emission Testing, Basics for Research – Applica-tions in Civil Engineering. Springer, Berlin (2008).Google Scholar
  5. 5.
    Ono, K.: Acoustic Emission. In: Rossing, T. (eds.) Springer Handbook of Acoustics, ch. 30, pp. 1209-1229. Springer-Verlag, New York (2014).Google Scholar
  6. 6.
    Berkovits, A., Fang, D.: Study of fatigue crack characteristics by acoustic emission. Engineering Fracture Mechanics 51(3), 401-416 (1995).CrossRefGoogle Scholar
  7. 7.
    Huang, M., Jiang, L., Liaw, P.K., Brooks, C.R., Seeley, R., Klarstrom, D.L.: Using acoustic emission in fatigue and fracture materials research. JOM 50(11), 1-12 (1998).Google Scholar
  8. 8.
    Carpinteri, A., Lacidogna, G., Pugno, N.: Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Engineering Fracture Mechanics 74(1-2), 273-289 (2007).CrossRefGoogle Scholar
  9. 9.
    Carpinteri, A., Lacidogna, G., Niccolini, G., Puzzi, S.: Critical defect size distributions in concrete structures detected by the acoustic emission technique. Meccanica 43(3), 349-363 (2008).CrossRefGoogle Scholar
  10. 10.
    Gorman, M.R.: Acoustic emission in structural health monitoring (SHM). In: Boller, C., Chang, F.K., Fujino, Y. (eds.) Encyclopedia of Structural Health Monitoring, ch. 4, pp. 79-100. John Wiley & Sons, Hoboken, New Jersey, United States (2009).Google Scholar
  11. 11.
    Ono, K.: Application of acoustic emission for structure diagnosis. Diagnostyka 2(58) 3-18 (2011).Google Scholar
  12. 12.
    Beattie, A.G.: Acoustic emission non-destructive testing of structures using source location techniques. SANDIA REPORT, no. SAND2013-7779. Sandia National Laboratories, Albuquerque, New Mexico, United States (2013).Google Scholar
  13. 13.
    Zaki, A., Chai, H.K., Aggelis, D.G., Alver, N.: Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique. Sensors 15(8), 19069-19101 (2015).CrossRefGoogle Scholar
  14. 14.
    Wu, J., Zhao, Y.S, Wan, Z., Dong, F., Feng, Z., Li, Y.: Experimental study of acoustic emission characteristics of granite thermal cracking under middle-high temperature and triaxial stress. Rock and Soil Mechanics 30(11), 3331-3336 (2009).Google Scholar
  15. 15.
    Boon, M.J.G.N., Zarouchas, D., Martinez, M., Gagar, D., Rinze, B. et al.: Temperature and load effects on acoustic emission signals for structural health monitoring applications. In: Proceedings of the 7th European Workshop on Structural Health Monitoring (EWSHM), Nantes, France (2014), pp. 1997-2003.Google Scholar
  16. 16.
    Vargalui, A., Martinez, M., Zarouchas, D.S., Pant, S.: Temperature effects on an acoustic emission based SHM system - Applied to composite materials. In: Proceedings of the 26th International Conference on Adaptive Structures and Technologies (ICAST 2015), Kobe, Japan (2015).Google Scholar
  17. 17.
    Geng, J., Sun, Q., Zhang, W., Lü, C.: Effect of high temperature on mechanical and acoustic emission properties of calcareous-aggregate concrete. Applied Thermal Engineering 106, 1200-1208 (2016).CrossRefGoogle Scholar
  18. 18.
    WisDOT Structure Inspection Manual, Part 5 – NDE and PDE Testing, Chapter 6 – Acoustic Emission, April 2014.Google Scholar
  19. 19.
    Brindley, B.J., Holt, J., Palmer, I.G.: Acoustic emission – 3: The use of ring-down count-ing. Non-Destructive Testing 6(6), 299-306 (1973).CrossRefGoogle Scholar
  20. 20.
    Sause, M.G.R.: Investigation of pencil-lead breaks as acoustic emission sources. Journal of Acoustic Emission 29, 184-196 (2011).Google Scholar
  21. 21.
    Hsu, N.N., Breckenridge, F.R.: Characterization and calibration of acoustic emission sen-sors. Materials Evaluation 39(1), 60-68 (1981).Google Scholar
  22. 22.
    Dao, P.B., Staszewski, W.J.: Cointegration approach for temperature effect compensation in Lamb wave based damage detection. Smart Materials and Structures 22(9), 095002 (2013).CrossRefGoogle Scholar
  23. 23.
    Dao, P.B., Staszewski, W.J.:, Lamb wave based structural damage detection using cointe-gration and fractal signal processing. Mechanical Systems and Signal Processing 49(1–2), 285-301 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Phong B. Dao
    • 1
    Email author
  • Marek Fortuna
    • 1
  • Wieslaw J. Staszewski
    • 1
  • Tadeusz Uhl
    • 1
  1. 1.Department of Robotics and MechatronicsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations