The Method of Searching Trees in Determining of the Optimal Number of Wheel Teeth for a Compound Planetary Gear

  • Adam DeptułaEmail author
  • Józef Drewniak
  • Marian A. Partyka
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


The paper presents the application of the algorithm for determining the optimal number of teeth for the compound planetary gear including the search trees. The method allows to generate the optimal range of teeth number for each of the gears. In the method of systematic search, we used an algorithm for generating induction decision trees, based on entropy growth as a method related to machine learning. In the next step parametric structures were used. Furthermore in the future it will allow further analyzes and syntheses, such as checking the isomorphism of the proposed solutions, determining the validity of construction and / or operating parameters of the analyzed gears.


compound planetary gear optimization kinematics search trees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allison, J., Herber, D., R.: Multidisciplinary Design Optimization of Dynamic Engineering Systems”, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences- AIAA (2013)Google Scholar
  2. 2.
    Biswala, M., Dash, P.K.: Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier, Digital Signal Processing, Volume 23, Issue 4, Pages 1071-1083 (2013)Google Scholar
  3. 3.
    Breiman, L.: Classification and Regression Trees. New York: Routledge (1984)Google Scholar
  4. 4.
    Clive, L. Little, D., P., Orwin, R., Spjut, E.: Engineering Design: A Project-Based Introduction, 3rd Edition, John Wiley & Sons, New York (2009)Google Scholar
  5. 5.
    Deptuła, A., Drewniak, J., Partyka, M. A.: Analysis of a planetary gear modelled with a contour graph considering the decision making complexity of game-tree structures, II International Conference of Computational Methods in Engineering Science (CMES’17), Exploitation And Machine Building, ITM Web Conf. 15, 04002 (2017)CrossRefGoogle Scholar
  6. 6.
    Deptuła, A., Drewniak, J., Partyka, M. A.: Application of dependence graphs and game trees in analysis of a planetary gear modeled with a contour graph, Machine Dynamics Research, nr 3/2017, vol41(2017)Google Scholar
  7. 7.
    Deptuła, A., Partyka M, A.: Application of decision logical trees and predominant logical variables in analysis of automatic transmissions gearboxes, In book: Proceedings of the 13\4th International Scientific Conference, Inter. Confer. Comp. Aid. Engin. CAE, Polanica Zdr., pod redakcją: Eugeniusz Rusiński, Damian Pietrusiak, Springer International Publishing (2018) [in print]Google Scholar
  8. 8.
    Deptuła, A., Partyka, M.A.: Application of game graphs in optimization of dynamic system structures. International Journal of Applied Mechanics and Engineering, vol.15, No.3 : 647-656 (2010)Google Scholar
  9. 9.
    Deptuła, A.: Application of Game Graphs to Describe the Inverse Problem in the Designing of Mechatronic Vibrating Systems. In: Zawiślak S., Rysiński J. (eds) Graph-Based Modelling in Engineering. Mechanisms and Machine Science, vol 42. Springer, pp.189-199 (2017)Google Scholar
  10. 10.
    Drewniak J., Deptuła A., Kądziołka T., Partyka M.A: Algorytm doboru optymalnej liczby zębów kół walcowych przekładni biplanetarnej, Autobusy - Technika. Eksploatacja. Systemy Transportowe, 12/2017, str. 802-806 (2017)Google Scholar
  11. 11.
    Drewniak J., Zawiślak S., Synthesis of planetary gears by means of artificial intelligence approach especially graph- theoretical modeling, Solid State Phenomena. Vol. 164, pp. 243- 248 (2010)CrossRefGoogle Scholar
  12. 12.
    Hooshmand R., Enshaee, A.: Detection and classification of single and combined power quality disturbances using fuzzy systems oriented by particle swarm optimization algorithm, Electric Power Systems Research, Volume 80, Issue 12, pp. 1552-1561 (2010)CrossRefGoogle Scholar
  13. 13.
    Kotsiantis, S.B.: Artificial Intelligence Review - Decision trees: a recent overview,Vol. 39, Issue 4, pp 261–283 (2013)CrossRefGoogle Scholar
  14. 14.
    Petrovića, J., Svetlana, I., Betzb, G., Durića, Z.: Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees, International Journal of Pharmaceutics, Volume 428, Issues 1–2, 30, Pages 57-67 (2012)CrossRefGoogle Scholar
  15. 15.
    Sahani, M., Dash, P.K.:Variational mode decomposition and weighted online sequential extreme learning machine for power quality event patterns recognition, Neurocomputing, Volume 310, pp. 10-27(2018)Google Scholar
  16. 16.
    Thang, K. F., Aggrwal, R. K., Esp D. G., McGrail, A. J.: Statistical and Neural Network Analysis of Dissolved in Power Transformer, IEEE Dielectric Materials, Measurements and Applications Conference (2000)Google Scholar
  17. 17.
    Uematsu, S.: An application of graph theory to the kinematic analysis of planetary gear trains, Int. Journal of the Japan Soc. for Precis. Eng., No. 31, pp. 141-146 (1997)Google Scholar
  18. 18.
    Ultsch, A.: Self-organising neural networks for visualisation and classification, [in:] Information and Classification, Opitz O., Lausen B., Klar R. [Eds.], 864–867, Springer-Verlag, Berlin (1993)Google Scholar
  19. 19.
    Wojnarowski, J., Drewniak, J., Kądziołka, T., Kopeć, J., Stańco, K., Zawiślak, S.: Application of Contour Equations to Kinematic Analysis of Complex and Compound Planetary Gears, IFToMM 2019, Kraków (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adam Deptuła
    • 1
    Email author
  • Józef Drewniak
    • 2
  • Marian A. Partyka
    • 1
  1. 1.Opole University of TechnologyOpolePoland
  2. 2.University of Bielsko-BialaBielsko-BialaPoland

Personalised recommendations