Advertisement

Hybrid AMCL-EKF filtering for SLAM-based pose estimation in rough terrain

  • Andrii KudriashovEmail author
  • Tomasz Buratowski
  • Mariusz Giergiel
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The original approach of wheeled mobile robot localization in rough terrain, that connects local hybrid particles-Kalman filtering and global SLAM-based pose tracking, has been presented in this paper. Authors, basing on Adaptive Monte-Carlo Localization (AMCL) features of good resistance to unexpected errors, including slippages and kidnapping, use this particles filter together with the laser odometry and the inertial navigation for local pose estimation, which is performed by Extended Kalman Filter (EKF). In the proposed technique the MCL algorithm is used, as one of data sources for Kalman’s filter. Instead its regular performance of global localization. Global localization is based on Rao-Blackwellized SLAM technique with motion information estimated by EKF observations from Lidar sensor. The developed approach is based on Robot Operation System (ROS) framework and verified by V-REP simulations, in comparison to similar techniques. The reached results confirm the robustness and stability of the developed approach in inspection tasks of rough terrain.

Keywords

mobile robotics pose estimation SLAM particle filter EKF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besl, P. J., McKay N. D.: Method for registration of 3-d shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)Google Scholar
  2. 2.
    Borenstein, J., Everett, H. R., Feng, L., Wehe, D.: Mobile robot positioning-sensors and techniques. Technical report, Naval command control and ocean surveillance center RDT and E DIV, San Diego CA (1997)Google Scholar
  3. 3.
    Borenstein, J., Feng, L.: UMBmark: A benchmark test for measuring odometry errors in mobile robots. In: Mobile Robots X. vol. 2591, pp. 113–125. International Society for Optics and Photonics (1995)Google Scholar
  4. 4.
    Buratowski, T., Ciszewski, M., Giergiel, M., Kudriashov, A., Mitka, L.: Robot z laserowym czujnikiem odleglości do budowy map 2d. Modelowanie inzynierskie, vol. 30, No. 61, pp. 27–33. (2016)Google Scholar
  5. 5.
    Buratowski, T., Dabrowski, B., Uhl, T., Kwosek, J.: The precise odometry navigation for the group of robots. Schedae Informaticae, vol.19, pp. 99–111. (2015)CrossRefGoogle Scholar
  6. 6.
    Censi, A.: An icp variant using a point-to-line metric. In: The Robotics and Automation (ICRA), 2008 IEEE International Conference, pp. 19–25. IEEE (2008)Google Scholar
  7. 7.
    Diosi, A., Kleeman, L.: Fast laser scan matching using polar coordinates. The International Journal of Robotics Research, vol. 26, No. 10, pp. 1125–1153. (2007)CrossRefGoogle Scholar
  8. 8.
    Doucet, A., De Freitas, N., Murphy, K., Russell, S.: Rao-blackwellised particle filtering for dynamic bayesian networks. In: 16th conference on Uncertainty in artificial intelligence, pp. 176–183. Morgan Kaufmann Publishers Inc. (2000)Google Scholar
  9. 9.
    Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: the Computer Vision and Pattern Recognition (CVPR), 2004 IEEE Computer Society Conference, vol. 1, pp. 964–971. IEEE (2004)Google Scholar
  10. 10.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE transactions on Robotics, vol. 23, pp.34–46. (2007)CrossRefGoogle Scholar
  11. 11.
    Huang, Y., Zhang, Y., Xu, B., Wu, Z., Chambers, J. A.: A new adaptive extended Kalman filter for cooperative localization. IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 1, pp. 353-368. (2018)CrossRefGoogle Scholar
  12. 12.
    Jaimez, M., Monroy, J., Gonzalez-Jimenez, J.: Planar odometry from a radial laser scanner. A range flow-based approach. In: the Robotics and Automation (ICRA), 2016 IEEE International Conference, pp. 4479–4485. IEEE (2016)Google Scholar
  13. 13.
    Kalman, R. E.: A new approach to linear filtering and prediction problems. Journal of basic Engineering, vol. 82, pp. 35–45. (1960)CrossRefGoogle Scholar
  14. 14.
    Kudriashov, A., Buratowski, T., Giergiel, M.: Robot’s pose estimation in environment exploration process with slam and laser techniques. Naukovi Notatki, vol. 58, pp. 204–212. (2017)Google Scholar
  15. 15.
    Jiang, Z., Zhou, W., et al. A new kind of accurate calibration method for robotic kinematic parameters based on the extended Kalman and particle filter algorithm. IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3337–3345. (2018)CrossRefGoogle Scholar
  16. 16.
    Maybeck, P. S.: Stochastic Models, Estimating, and Control. Academic Press, Cambridge, MA (1979)Google Scholar
  17. 17.
    Milella, A., Reina, G., Siegwart, R.: Computer Vision Methods for Improved Mobile Robot State Estimation in Challenging Terrains. Journal of multimedia, vol. 1, no. 7, pp. 49–61. (2006)Google Scholar
  18. 18.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: Fastslam: A factored solution to the simultaneous localization and mapping problem. In: proceedings of the AAAI National Conference on Artificial Intelligence. AAAI (2002)Google Scholar
  19. 19.
    Moore, T., Stouch, D.: A Generalized Extended Kalman Filter Implementation for the Robot Operating System In: 13th International Conference on Intelligent Autonomous Systems (IAS-13). Springer (2014)Google Scholar
  20. 20.
    Ojeda, L., Reina, G., Cruz, D., Borenstein, J.: The FLEXnav precision dead–reckoning system. International Journal of Vehicle Autonomous Systems, vol. 4, no. 2-4, pp. 173–195. (2006)CrossRefGoogle Scholar
  21. 21.
    Reina, G., Messina, A.: Vehicle dynamics estimation via augmented Extended Kalman Filtering. Measurement, vol. 133, pp. 383–395. (2019)CrossRefGoogle Scholar
  22. 22.
    Skrzypczyński, P.: Simultaneous localization and mapping: A feature-based probabilistic approach. International Journal of Applied Mathematics and Computer Science, vol. 19, No. 4, pp. 575–588. (2009)CrossRefGoogle Scholar
  23. 23.
    Skrzypczyński, P.: Laser scan matching for self-localization of a walking robot in man-made environments. Industrial Robot: An International Journal, vol. 39, No. 3, pp. 242–250. (2012)CrossRefGoogle Scholar
  24. 24.
    Smith, R. C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. The international journal of Robotics Research, vol. 5, No. 4, pp. 56–68. (1986)CrossRefGoogle Scholar
  25. 25.
    Steux, B., El Hamzaoui, O.: tinyslam: A slam algorithm in less than 200 lines c–language program. In: the Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference, pp. 1975–1979. IEEE (2010)Google Scholar
  26. 26.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. The MIT Press. Cambridge, MA (2005)Google Scholar
  27. 27.
    Woodman, O. J.: An introduction to inertial navigation. Technical report, University of Cambridge, Computer Laboratory. Cambridge, UK (2007)Google Scholar
  28. 28.
    Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: the Robotics: Science and Systems 2014, vol. 7. University of California, Berkeley (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrii Kudriashov
    • 1
    Email author
  • Tomasz Buratowski
    • 1
  • Mariusz Giergiel
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations