Advertisement

A Novel 3 DOFs Waist Mechanism for Humanoid Robots: Kinematic Analysis and Motion Simulation

  • Marko PenčićEmail author
  • Maja Čavić
  • Boris Brkić
  • Milan Rackov
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The paper presents the kinematic analysis and motion simulation of the waist mechanism for humanoid robots. The waist mechanism with total 3 DOFs is proposed. It consists of two interconnected spatial mechanisms that allow movements around the pitch and roll axes, while the third is planar mechanism for movements around the yaw axis. Due to the structure of links, spatial mechanisms can function independently and/or simultaneously. By kinematic analysis of the waist mechanism, the kinematic parameters are defined and based on that, a kinematic model is formed. Motion simulation of the waist mechanism for initial movements of flexion, extension, lateral flexion and rotation is performed. For the corresponding movement and range of motion, the waist mechanism reaches the kinematic parameters of the human lumbar spine region, which was the basic requirement for realization.

Keywords

Humanoid robot Waist mechanism Kinematic analysis Motion simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia [III44008] and by the Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina [114-451-2116/2011].

References

  1. 1.
    Or, J.: Humanoids grow a spine: the effect of lateral spinal motion on the mechanical energy efficiency. IEEE Robot. Autom. Mag. 20(2), 71–81 (2013).CrossRefGoogle Scholar
  2. 2.
    Penčić, M.M., Borovac, B.A., Kovačević, D.I., Čavić, M.V: Development of the multi-segment lumbar spine for humanoid robots. Therm. Sci. 20(suppl. 2), S581–S590 (2016).CrossRefGoogle Scholar
  3. 3.
    Penčić, M., Rackov, M., Čavić, M., Kiss, I., Cioată, V.G.: Social humanoid robot SARA: development of the wrist mechanism. IOP Conf. Ser.: Mater. Sci. Eng. 294(1), 012079-1–012079-10 (2017).CrossRefGoogle Scholar
  4. 4.
    Penčić, M., Čavić, M., Rackov, M., Borovac, B., Lu, Z.: Drive system of the robot eyeballs and eyelids with 8 DOFs. In: Doroftei, I., Oprisan, C., Pisla, D., Lovasz, E.-C. (eds.) New Advances in Mechanism and Machine Science: SYROM 2017, MMS, vol. 57, pp. 47–56. Springer, Cham (2018).CrossRefGoogle Scholar
  5. 5.
    Penčić, M., Čavić, M., Borovac, B., Lu, Z., Rackov, M.: Robotic eyes with 7 DOFs: structural design and motion simulation. In: Arakelian, V., Wenger, P. (eds.) ROMANSY 22 – Robot Design, Dynamics and Control, CISM, vol. 584, pp. 52–60. Springer, Cham (2019).Google Scholar
  6. 6.
    Penčić, M., Čavić, M., Borovac, B., Lu, Z.: Social humanoid robot SARA: Development and realization of the shrug mechanism. In: Gasparetto, A., Ceccarelli M. (eds.) Mechanism Design for Robotics: MEDER 2018, MMS, vol. 66, pp. 369–377. Springer, Cham (2019).Google Scholar
  7. 7.
    Neumann, D.A.: Kinesiology of the Musculoskeletal System. Mosby, St. Louis (2010).Google Scholar
  8. 8.
    Trokea, M., Moore, A.P., Maillardet, F.J, Cheek, E.: A normative database of lumbar spine ranges of motion. Manual Ther. 10(3), 198–206 (2005).CrossRefGoogle Scholar
  9. 9.
    McGregor, A.H., McCarthy, I.D., Hughes, S.P.: Motion characteristics of the lumbar spine in the normal population. Spine 20(22), 2421–2428 (1995).CrossRefGoogle Scholar
  10. 10.
    Yu, Z., Huang, Q., Ma, G., Chen, X., Zhang, W., Li, J., Gao, J.: Design and development of the humanoid robot BHR-5. Adv. Mech. Eng. 6(1), 852937-1–852937-11 (2014).CrossRefGoogle Scholar
  11. 11.
    Kajita, S., Kaneko, K., Kaneiro, F., Harada, K., Morisawa, M., Nakaoka, S., Miura, K., Fujiwara, K., Neo, E.S., Hara, I., Yokoi, K., Hirukawa, H.: Cybernetic human HRP-4C: a humanoid robot with human-like proportions. In: Pradalier, C., Siegwart, R., Hirzinger G. (eds.) Robotics Research: ISRR 2009, STAR, vol. 70, pp. 301–314. Springer, Berlin (2011).Google Scholar
  12. 12.
    Kwon, W., Kim, H.K., Park, J.K, Roh, C.H., Lee, J., Park, J., Kim, W.-K., Roh, K.: Biped humanoid robot Mahru III. In: Proceedings of the 7th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2007, pp. 583–588. IEEE Press (2009).Google Scholar
  13. 13.
    Ogawa, K., Narioka, K., Hosoda, K.: Development of whole-body humanoid ”Pneumat-BS” with pneumatic musculoskeletal system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2011, pp. 4838–4843. IEEE Press (2011).Google Scholar
  14. 14.
    Stasse, O., Flayols, T., Budhiraja, R., Giraud-Esclasse, K., Carpentier, J., Mirabel, J., del Prete, A., Souères, P., Mansard, N., Lamiraux, F., Laumond, J.-P., Marchionni, L., Tome, H., Ferro, F.: TALOS: a new humanoid research platform targeted for industrial applications. In: Proceedings of the 17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017, pp. 689–695. IEEE Press (2018).Google Scholar
  15. 15.
    Nagasaka, K.: Sony QRIO. In: Goswami, A., Vadakkepat, P. (eds.) Humanoid Robotics: A Reference, pp. 187–200. Springer, Dordrecht (2019).Google Scholar
  16. 16.
    Diftler, M.A., Mehling, J.S., Abdallah, M.E., Radford, N.A., Bridgwater, L.B., Sanders, A.M., Askew, R.S., Linn, D.M., Yamokoski, J.D., Permenter, F.A., Hargrave, B.K., Platt, R., Savely, R.T., Ambrose, R.O.: Robonaut 2 – the first humanoid robot in space. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2011, pp. 2178–2183. IEEE Press (2011).Google Scholar
  17. 17.
    Kim, J., Lee, Y., Kwon, S., Seo, K., Kwak, H.-S., Lee, H., Roh, K.: Development of the lower limbs for a humanoid robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, pp. 4000–4005. IEEE Press (2012).Google Scholar
  18. 18.
    Radford, N.A., Strawser, P., Hambuchen, K., Mehling, J.S., Verdeyen, W.K., Donnan, A.S., Holley, J., Sanchez, J., Nguyen, V., Bridgwater, L., Berka, R., Ambrose, R., Markee, M.M., Fraser-Chanpong, N.J., McQuin, C., Yamokoski, J.D., Hart, S., Guo, R., Parsons, A., Wightman, B., Dinh, P., Ames, B., Blakely, C., Edmondson, C., Sommers, B., Rea, R., Tobler, C., Bibby, H., Howard, B., Niu, L., Lee, A., Conover, M., Truong, L., Reed, R., Chesney, D., Platt, R., Johnson, G., Fok, C.-L., Paine, N., Sentis, L., Cousineau, E., Sinnet, R., Lack, J., Powell, M., Morris, B., Ames, A., Akinyode, J.: Valkyrie: NASA’s first bipedal humanoid robot. J. Field Robot. 32(3), 397–419 (2015).CrossRefGoogle Scholar
  19. 19.
    Penčić, M., Čavić, M., Borovac, B.: Development of the low backlash planetary gearbox for humanoid robots. FME Trans. 45(1), 122–129 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations