Advertisement

A kinematic model and dynamic simulation of a parallel robotic structure for lower limb rehabilitation

  • Paul Tucan
  • Calin Vaida
  • Giuseppe Carbone
  • Adrian Pisla
  • Ferenc Puskas
  • Bogdan Gherman
  • Doina PislaEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The paper presents the kinematic model and dynamic simulation of a parallel robotic structure for lower limb rehabilitation of post-stroke bedridden patients. The parallel robotic structure has a modular construction that enables the motion of each targeted joint: hip, knee and ankle. The kinematic model and singularities of the robotic structure are presented. A comparison between the results obtained through numerical simulation of kinematic model using Matlab and the ones obtained through graphical simulation of the robotic structure using Siemens NX is reported along with a dynamic simulation of the robotic structure carried on using Motion module provided also by Siemens NX.

Keywords

Parallel robot Lower limb rehabilitation Kinematic model Dynamic simulation Stroke 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The paper presents results from the research activities of the project ID 37_215, MySMIS code 103415 “Innovative approaches regarding the rehabilitation and assistive robotics for healthy ageing” cofinanced by the European Regional Development Fund through the Competitivness Operational Programme 2014-2020, Priority Axis 1, Action 1.1.4, through the financing contract 20/01.09.2016, between the Technical University of Cluj-Napoca and ANCSI as Intermediary Organism in the name and for the Ministry of European Funds.

References

  1. 1.
    D. Lloyd-Jones, R. J. Adams, T. M. Brown et al., : Heart disease and stroke statistics—2010 update: a report from the American heart association. Circulation 121(7), e46–e215 (2010).Google Scholar
  2. 2.
    Benjamin E.J., Virani S.S., Callaway C.W. et al., : Heart Disease and Stroke Statistics 2018At-a-Glance, Circulation 137(12), e67-e492, (2018).Google Scholar
  3. 3.
    Powers, W.J., Rabinstein, A.A., Ackerson, T. et al.,; 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association, Stroke 4993), e49-e99, (2018).Google Scholar
  4. 4.
    Knecht S.,H.,Osetr, P.,: Rehabilitation After Stroke, Deutsches Ärzteblatt International, 108(36), 600-606, (2011).Google Scholar
  5. 5.
    Vaida.C, Plitea N., Pisla D., et.al, : Spherical robot for medical rehabilitation of proximal area of the upper limb, patent request: A00374/14.06.2017, Romania, (2017).Google Scholar
  6. 6.
    Carbone G., Pisla D., Vaida C., et al.: Innovative cable system for upper limb rehabilitation, patent request :A/00558/31.08.2018, Romania, (2018).Google Scholar
  7. 7.
    Wunderly C., Siffeti A., Hardy C., : Machine for upper limb physical therapy, patent no: US20030028130A1, USA, (2003).Google Scholar
  8. 8.
    Burdea, G.C., Arezki, A., Bouzit M., et al: Rehabilitation systems and methods, patent no: US20090131225A1, USA, (2009).Google Scholar
  9. 9.
    Nadas, I., A., Pisla, D., Vaida,C., et al.: Design of dual-arm exoskeleton for mirrored upper limb rehabilitation, Proceedings of MESROB 2018, New Trends in Medical and Service Robotics: Advances in Theory and Practice, 65, ISBN: 978-3-030-00328-9, (2018).Google Scholar
  10. 10.
    Hu, J., Lim Y., J., Bonato P., et al: Lower extremity robotic rehabilitation system, patent no: US20140100491A1, USA, (2014).Google Scholar
  11. 11.
    Bosecker C., J., Krebs, H., I., :Dynamic lower limb rehabilitation robotic apparatus and method of rehabilitating human gait, patent no: US20100298102A1, USA, (2010).Google Scholar
  12. 12.
    Barroso F., Santos C., Moreno J.C., et al: Influence of the robotic exoskeleton Lokomat on the control of human gait: An electromyographic and kinematic analysis, 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG), 1-6, (2013).Google Scholar
  13. 13.
    Iosa M., Morone G., Bragoni M., et al: Driving electromechanically assisted Gait Trainer for people with stroke, J Rehabil Res Dev., 48(2), 135-46, (2011).CrossRefGoogle Scholar
  14. 14.
    Blaya J.A., Herr H. : Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait, IEEE Trans Neural Syst Rehabil Eng., 12(1), 24-31, (2004).CrossRefGoogle Scholar
  15. 15.
    Vaida C., Birlescu I., Pisla A., et al: RAISE - An innovative parallel robotic system for lower limb rehabilitation, Proceedings of MESROB 2018, New Trends in Medical and Service Robotics: Advances in Theory and Practice, 65, ISBN: 978-3-030-00328-9, (2018).Google Scholar
  16. 16.
    Norkin, C. C., White, D., J..: Measurement of joint motion: A guide to goniometry. Fourth edition. Philadelphia: F.A. Davis. 591 pages, (2016).Google Scholar
  17. 17.
    Huston R., :Principles of Biomechanics, CRC Press, 442 pages, (2008).Google Scholar
  18. 18.
    Vaida C., Plitea N., Gherman B. et al: Structural analysis and synthesis of parallel robots for brachytherapy. New Trends in Medical and Service Robots, Springer, MMS 16, 191–204, (2014).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CESTERTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.LARMUniversity of CassinoCassinoItaly
  3. 3.S.C. Electronic APRIL LtdCluj-NapocaRomania

Personalised recommendations