Rigid finite elements and multibody modeling in analyses of a robot shaped elastic/plastic deformations of a beam

  • Krzysztof LipinskiEmail author
  • Krzysztof Bobrowski
  • Edmund Wittbrodt
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


Dynamics analysis of a system composed of a parallel manipulator and of an elastic beam is presented in the paper. Classic 3RRR parallel manipulator is considered and used to deform the beam. Elasto-plastic deformations are investigated. Rigid-finite-elements technique is employed to deal with dynamics of the beam. A multibody structure is associated with the introduced hybrid system in order to model its dynamics. Idea of the corresponding numerical model is presented. Then numerical tests are performed in order to observe behaviour of the tested system. The tests have validated that the parallel manipulator can be successfully used for plastic deformations of beams in order to form them into the industry required shapes. The tests proved that resistances of the beam deformations are the dominant loads for such application. Influence of the platform dynamics is of the secondary order. Longitudinal slip at the platform’s gripper is significant during such processes and should not be locked.


Parallel Robots Multibody System Finite rigid elements Beam deformations Elasto-plastic deformations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Merlet, J.P.: Parallerl Robots. 2nd edn. Springer, Netherlands (2006)Google Scholar
  2. [2]
    Staicu S.: Dynamics of Parallel Robots. Springer Internat. Publishing, Switzerland (2019)CrossRefGoogle Scholar
  3. [3]
    Notash, L., Huang, L.: On the design of fault tolerant parallel manipulators. Mechanism and Machine Theory 38, 85–101 (2003)CrossRefGoogle Scholar
  4. [4]
    Lipinski, K.: Modeling and Control of a Redundantly Actuated Variable Mass 3RRR Planar Manipulator Controlled by a Model-Based Feedforward and a Model-Based-Proportional-Derivative Feedforward–Feedback Controller. Mechatronics 37, 42–53 (2016).CrossRefGoogle Scholar
  5. [5]
    Lipinski, K.: Redundant Actuation of 3RRR over-actuated Planar Parallel Manipulator. Acta Technica Napocensis-Series Applied Mathematics and Mechanics 52(3), 137-142 (2009).Google Scholar
  6. [6]
    Germain, C., Briot, S., Caro, S., Wegner Ph.: Natural Frequency Computation of Parallel Robots. Journal of Computational and Nonlinear Dynamics 10(2), (2015).CrossRefGoogle Scholar
  7. [7]
    Kruszewski J., Gawroński W., Wittbrodt E., Najbar F., Grabowski S.: Metoda sztywnych elementów skończonych, Arkady, (in Polish), Warszawa, Poland (1975).Google Scholar
  8. [8]
    Kruszewski J., Sawiak S. and Wittbrodt E.: Metoda sztywnych elementów skończonych w dynamice konstrukcji, WNT, (in Polish), Warszawa, Poland (1999).Google Scholar
  9. [9]
    Wittbrodt E., Adamiec-Wójcik I. and Wojciech S.: Dynamics of flexible multibody systems, Springer (2006).Google Scholar
  10. [10]
    Wojciech S.: Dynamika płaskich mechanizmów dźwigniowych z uwzględnieniem podatności ogniw oraz tarcia i luzów w węzłach, Wydawnictwo Politechniki Łódzkiej, rozprawy naukowe nr 66, (in Polish), Łódz, Poland (1984).Google Scholar
  11. [11]
    Lipinski, K.: Rigid finite elements and multibody modelling used in estimation and reduction of rod vibrations. The Archive of Mechanical Engineering LX (3), 369–388 (2013).CrossRefGoogle Scholar
  12. [12]
    Lipiński K., Wittbrodt E.: Nelder-Mead optimization in dynamical balancing of planar four bar mechanism and rigid finite elements’ modeling in an analysis of its deformations, Proceedings, 7th World Congress on Structural and Multidisciplinary Optimization, WCSMO-7, 21–25 May 2007, ISSMO – international society of structural and multidisciplinary optimization, Seul, Korea, 1908–1917 (2007).Google Scholar
  13. [13]
    Fisette, P., Lipinski, K., Samin, J.C.: Modelling for the Simulation Control and Optimization of Multibody System. Advances in Multib. Sys. and Mechat., Gratz(Austria), 139-174 (1999).Google Scholar
  14. [14]
    Fisette, P., Samin, J.C.: Symbolic Modeling of Multibody System. Kluwer Acad. Publ., Netherlands (2003).Google Scholar
  15. [15]
    Lipiński, K.: Multibody Systems with Unilateral Constr. in Application to Modelling of Complex Mechanical Systems. Monografie 123, Wydaw.P.G., Gdańsk (2012) (in Polish).Google Scholar
  16. [16]
    Haug, E.J. Yen, J.: Generalized Coord. Partitioning Meth. for Num. Integ., Real-Time Integ. Meth. for Mech. Sys. Simul.. NATO ASI Series 69, 97-114 (1990).Google Scholar
  17. [17]
    Stok, B., Halilovic, M.: Analytical solutions in elasto-plastic bending of beams with rectangular cross section. Applied mathematical Modelling 33(3), 1749-1760 (2009)CrossRefGoogle Scholar
  18. [18]
    Rimovskis, S., Sabaliauskas, A.: Analysis of Rectangular and Circular Cross-section Power Hardening Elements under Pure Bending. International Journal of Materials Engineering 2(6), 84-89 (2012).CrossRefGoogle Scholar
  19. [19]
    Rees, D. W.: Descriptions of Reversed Yielding in Bending. Journal of Mechanical Engineering Science 221, 981-991 (2007).Google Scholar
  20. [20]
    Jakubowicz, A., Orłoś, Z.: Wytrzymałość materiałów, WNT, Warszawa, Poland,(1984).Google Scholar
  21. [21]
  22. [22]
    Wittbrodt E., Szczotka M., Maczyński W., Wojciech S. : Rigid Finite Elerment Method in Analysis of Dynamics of Offshore Structures. Springer (2013).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gdańsk University of TechnologyGdańskPoland

Personalised recommendations