Advertisement

A Kinematotropic Parallel Mechanism Reconfiguring Between Three Motion Branches of Different Mobility

  • P. C. López-CustodioEmail author
  • A. Müller
  • J. S. Dai
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The configuration space of most of the reported kinematotropic mechanisms consists of several subvarieties whose dimension varies between two values. Therefore, most of the reported kinematotropic mechanisms can change their number of degrees of freedom between two values only. In this paper a fully parallel mechanism is presented which has a configuration space with at least three subvarieties of different dimensions. These subvarieties intersect at least at two singular points, which allow the mechanism to reconfigure between three branches without disassembling it and, therefore, the proposed mechanism can change its number of degrees of freedom between three values.

Keywords

kinematotropic reconfigurable mechanisms parallel mechanisms local analysis higher order analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

P.C. López-Custodio thanks TheMexican National Council for Science and Technology (CONACyT) and the Advanced Kinematics and Reconfigurable Robotics Lab at King’s College for the support awarded to pursue doctoral studies. A. Müller acknowledges that work has been supported by the “LCM K2 Center for Symbiotic Mechatronics” within the framework of the Austrian COMETK2 program. P.C. López-Custodio and J.S. Dai acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC) projects with reference numbers EP/P025447/1 and EP/P026087/1.

References

  1. 1.
    Aimedee, F., Gogu, G., Dai, J., Bouzgarrou, C., Bouton, N.: Systematization of morphing in reconfigurable mechanisms. Mechanism and Machine Theory 96, Part 2, 215 – 224 (2016). DOI  https://doi.org/10.1016/j.mechmachtheory.2015.07.009CrossRefGoogle Scholar
  2. 2.
    Dai, J., Jones, J.R.: Mobility in metamorphic mechanisms of foldable/erectable kinds. Transactions of the ASME: Journal of Mechanical Design 121(3), 375–382 (1999)CrossRefGoogle Scholar
  3. 3.
    Dai, J.S., Gogu, G.: Special issue on reconfigurable mechanisms: Morphing, metamorphosis and reconfiguration through constraint variations and reconfigurable joints. Mechanism and Machine Theory 96, Part 2, 213 – 214 (2016). DOI  https://doi.org/10.1016/j.mechmachtheory.2015.11.006CrossRefGoogle Scholar
  4. 4.
    Galletti, C., Fanghella, P.: Single-loop kinematotropic mechanisms. Mechanism and Machine Theory 36(3), 743–761 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gan, D., Dai, J., Liao, Q.: Mobility change in two types of metamorphic parallel mechanisms. Transactions of the ASME Journal of Mechanisms and Robotics 1(4), 9 pages (2008). DOI http://dx.doi.org/10.1115/1.3211023CrossRefGoogle Scholar
  6. 6.
    Jenkins, E.M., Crossley, F.R.E., Hunt, K.H.: Gross motion attributes of certain spatial mechanisms. Journal of Engineering for Industry 91(1), 83–90 (1969). DOI  https://doi.org/10.1115/1.3591557CrossRefGoogle Scholar
  7. 7.
    Kang, X., Zhang, X., Dai, J.S.: First- and second-order kinematics-based constraint system analysis and reconfiguration identification for the queer-square mechanism. ASME Journal of Mechanisms and Robotics 11, 15 pages (2019)CrossRefGoogle Scholar
  8. 8.
    Kong, X.: Type synthesis of variable degrees-of-freedom parallel manipulators with both planar and 3T1R operation modes. In: Proceedings of the ASME 2012 International Design Engineering Technical Conferences, pp. 497–504. Chicago, IL, U.S.A. (2012). Paper number DETC2012-70621Google Scholar
  9. 9.
    Kong, X., Gosselin, C.M.: Type synthesis of parallel mechanisms with multiple operation modes. ASME Journal of Mechanical Design 129, 595 – 601 (2006). DOI http://dx.doi.org/10.1115/1.2717228CrossRefGoogle Scholar
  10. 10.
    Kong, X., Pfurner, M.: Type synthesis and reconfiguration analysis of a class of variable-dof single-loop mechanisms. Mechanism and Machine Theory 85, 116–128 (2015)CrossRefGoogle Scholar
  11. 11.
    Lerbet, J.: Analytic geometry and singularities of mechanisms. Zeitschrift für Angewandte Mathematik und Mechanik. 78(10), 687–694 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    López-Custodio, P., Rico, J., Cervantes-Sánchez, J., Pérez-Soto, G.: Reconfigurable mechanisms from the intersection of surfaces. ASME Journal of Mechanisms and Robotics 8(2), 021,029–1—021,029–19 (2016)CrossRefGoogle Scholar
  13. 13.
    López-Custodio, P., Rico, J., Cervantes-Sánchez, J., Pérez-Soto, G., Díez-Martínez, C.: Verification of the higher order kinematic analyses equations. European Journal of Mechanics - A/Solids 61, 198 – 215 (2017). DOI http://dx.doi.org/10.1016/j.euromechsol.2016.09.010MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    López-Custodio, P.C., Dai, J.S., Rico, J.M.: Branch reconfiguration of Bricard linkages based on toroids intersections: Plane-symmetric case. ASME Journal of Mechanisms and Robotics 10(3), 031,002–031,002–12 (2018). DOI  https://doi.org/10.1115/1.4038981CrossRefGoogle Scholar
  15. 15.
    López-Custodio, P.C., Rico, J.M., Cervantes-Sánchez, J.J.: Local analysis of helicoid-helicoid intersections in reconfigurable linkages. ASME Journal of Mechanisms and Robotics 9(3), 031,008 – 031,008–17 (2017). DOI  https://doi.org/10.1115/1.4035682CrossRefGoogle Scholar
  16. 16.
    Ma, X., Zhang, K., Dai, J.S.: Novel spherical-planar and bennett-spherical 6r metamorphic linkages with reconfigurable motion branches. Mechanism and Machine Theory 128, 628 – 647 (2018)CrossRefGoogle Scholar
  17. 17.
    Müller, A.: Higher derivatives of the kinematic mapping and some applications. Mechanism and Machine Theory 76, 70 – 85 (2014). DOI http://dx.doi.org/10.1016/j.mechmachtheory.2014.01.007CrossRefGoogle Scholar
  18. 18.
    Müller, A.: Local kinematic analysis of closed-loop linkages –mobility, singularities, and shakiness. ASME Journal of Mechanisms and Robotics 8(4), 11 pages (2016). DOI  https://doi.org/10.1115/1.4032778CrossRefGoogle Scholar
  19. 19.
    Müller, A.: Recursive higher-order constraints for linkages with lower kinematic pairs. Mechanism and Machine Theory 100, 33 – 43 (2016)CrossRefGoogle Scholar
  20. 20.
    Müller, A.: Higher-order analysis of kinematic singularities of lower pair linkages and serial manipulators. ASME Journal of Mechanisms and Robotics 10(1), (13 pages) (2018)CrossRefGoogle Scholar
  21. 21.
    Qin, Y., Dai, J., Gogu, G.: Multi-furcation in a derivative queer-square mechanism. Mechanism and machine theory 81, 36–53 (2014). DOI  https://doi.org/10.1016/j.mechmachtheory.2014.06.006CrossRefGoogle Scholar
  22. 22.
    Rico, J., Gallardo, J., Duffy, J.: Screw theory and the higher order kinematic analysis of serial and closed chains. Mechanism and Machine Theory 34(4), 559–586 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Rico, J.M., Ravani, B.: On mobility analysis of linkages using group theory. Transactions of the ASME: Journal of Mechanical Design 125(1), 70–80 (2003). DOI  https://doi.org/10.1115/1.1541628CrossRefGoogle Scholar
  24. 24.
    Torfason, L., Sharma, A.: Analysis of spatial RRGRR mechanisms by the method of generated surfaces. Transactions of the ASME: Journal of Engineering for Industry 95(3), 704–708 (1973)CrossRefGoogle Scholar
  25. 25.
    Torfason, L.E., Crossley, F.R.E.: Use of the intersection of surfaces as a method for design of spatial mechanisms. In: Proceedings of the 3rd World Congress for the Theory of Machines and Mechanisms, vol. B, pp. 247–258. Kupari, Yugoslavia (1971). Paper B-20Google Scholar
  26. 26.
    Wang, J., Kong, X.: A novel method for constructing multimode deployable polyhedron mechanisms using symmetric spatial compositional units. ASME Journal of Mechanisms and Robotics 11(2), (8 pages) (2019)CrossRefGoogle Scholar
  27. 27.
    Wohlhart, K.: Kinematotropic linkages. In: J. Lenarˇciˇc, V. Parent-Castelli (eds.) Recent Advances in Robot Kinematics, pp. 359–368. Portoroz, Slovenia. Dordrecht: The Netherlands (1996)CrossRefGoogle Scholar
  28. 28.
    Ye, W., Fang, Y., Zhang, K., Guo, S.: A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain. Mechanism and Machine Theory 74, 1 – 9 (2014). DOI http://dx.doi.org/10.1016/j.mechmachtheory.2013.11.011CrossRefGoogle Scholar
  29. 29.
    Zhang, K., Dai, J., Fang, Y.: Geometric constraint and mobility variation of two 3SvPSv metamorphic parallel mechanisms. ASME Journal of Mechanical Design 135(1), 011,001–011,001–8 (2013). DOI http://dx.doi.org/10.1115/1.4007920CrossRefGoogle Scholar
  30. 30.
    Zhang, K., Dai, J.S.: Screw-system-variation enabled reconfiguration of the Bennett plano-spherical hybrid linkage and its evolved parallel mechanism. ASME Journal of Mechanical Design 137(6), 10 pages (2015)CrossRefGoogle Scholar
  31. 31.
    Zhang, K., Dai, J.S.: Geometric constraints and motion branch variations for reconfiguration of single-loop linkages with mobility one. Mechanism and Machine Theory 106, 16 – 29 (2016). DOI http://dx.doi.org/10.1016/j.mechmachtheory.2016.08.006CrossRefGoogle Scholar
  32. 32.
    Zhang, K., Dai, J.S.: Reconfiguration of the plane-symmetric double-spherical 6R linkage with bifurcation and trifurcation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230(3), 473–482 (2016)Google Scholar
  33. 33.
    Zhang, K., Müller, A., Dai, J.: A novel reconfigurable 7R linkage with multifurcation. In: X. Ding, X. Kong, J.S. Dai (eds.) Advances in Reconfigurable Mechanisms and Robots II, pp. 3–14. Springer International Publishing, Cham (2016). DOI  https://doi.org/10.1007/978-3-319-23327-7_2Google Scholar
  34. 34.
    Zhang, L., Dai, J., Liao, Q.: Reconfiguration of spatial metamorphic mechanisms. Transactions of the ASME Journal of Mechanisms and Robotics 1(1), 8 pages (2008). DOI http://dx.doi.org/10.1115/1.2963025CrossRefGoogle Scholar
  35. 35.
    Zlatanov, D., Bonev, I., Gosselin, C.: Constraint singularities as configuration space singularities. In: J. Lenarˇciˇc, F. Thomas (eds.) Advances in Robot Kinematics, pp. 183–192. Springer Netherlands (2002). DOI  https://doi.org/10.1007/978-94-017-0657-5_20CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. C. López-Custodio
    • 1
    Email author
  • A. Müller
    • 2
  • J. S. Dai
    • 1
  1. 1.King’s College LondonLondonUK
  2. 2.Johannes Kepler UniversityLinzAustria

Personalised recommendations