Advertisement

An approach for faster trajectory planning of pick-and-place parallel robots using velocity capability

  • Leonardo MejiaEmail author
  • Daniel Ponce
  • Henrique Simas
  • Daniel Martins
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper proposes a novel approach for faster trajectory planning of pick-and-place in a 3RRR planar parallel robot using as main parameter its velocity capability in the Cartesian space. The paper also proposes a Generalized Scaling Factor Method to obtain the maximum velocity (Viso) at the end-effector of a planar parallel manipulator while its angular velocity is is kept constant by applying a unit twist ($V) including an unknown value μ as the component of the angular velocity in z. Two study cases are shown to analyse the faster trajectory planning for different trajectories and in different working modes.

Keywords

Faster trajectory Generalized scaling factor method Davies’ Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang, J., Hu, p., Wu, K., Zeng, M.: Optimaltime-jerk trajectory planningfor industrial robots. Mechanism and Machine Theory, 121, pp. 530544, (2018).CrossRefGoogle Scholar
  2. 2.
    Rossi, C., Savino, S.: Robot trajectory planning by assigning positions and tangential velocities, Robotics and Computer-Integrated Manufacturing, 29, pp. 139156, (2013).CrossRefGoogle Scholar
  3. 3.
    Azizi, M.R., Khani, R.: An algorithm for smooth trajectory planning optimization of isotropic translational parallel manipulators, Proc.Inst. Mech.Eng. Part C 230(12), pp. 19872002, (2016).Google Scholar
  4. 4.
    Chen, D.S., Zhang, B.G., Wang, M.: Cartesian space trajectory planning on 7-DOF manipulator, IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, pp.940945, (2015).Google Scholar
  5. 5.
    Valero, F., Mata, V., Besa, A.: Trajectory planning in workspaces with obstacles taking into account the dynamic robot behaviour,Mech.Mach.Theory 41(5), pp. 525536. (2006).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bazaz, S.A., Tondu, B.: Cubic spline for on line cartesian space trajectory planning of an industrial manipulator, International Workshop on Advanced MotionControl(AMC 98), Coimbra, Portugal, pp. 493498. (,1998).Google Scholar
  7. 7.
    Liu, H.S., Lai, X.B., Wu, W.X.: Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints, Rob.Comput.Integr. Manuf.29(2), pp. 309317, (2013).CrossRefGoogle Scholar
  8. 8.
    Macfarlane, S., Croft, E.A.: Jerk-bounded manipulator trajectory planning: design for real-time applications, IEEE Trans.Rob.Autom 19(1), pp. 4252, (2003).CrossRefGoogle Scholar
  9. 9.
    Piazzi, A., Visioli, A., Global minimum-jerk trajectory planning of robot manipulators, IEEE Trans.Indust. Electron.47(1), pp. 140149, (2000).CrossRefGoogle Scholar
  10. 10.
    Gosselin, C.M., Hadj-Messaoud, A.: Automatic planning of smooth trajectories for pick-and-place operations, AMSEJ. Mech.Des.115(3), pp. 450456, (1993).CrossRefGoogle Scholar
  11. 11.
    Angeles, J., Alivizatos, A., Zsombor-Murray, P.J.: The synthesis of smooth trajectories for pick-and-place operations, IEEE Trans.Syst.ManCybern.18(1), 173178, (1988).CrossRefGoogle Scholar
  12. 12.
    Li, Y., Huang, T., Chetwynd, D.: An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines, 126, pp. 479490, (2018).CrossRefGoogle Scholar
  13. 13.
    Mejia, L., Frantz, J., Simas, H., Martins, D.: Modified Scaling Factor Method for the Obtention of the Wrench Capabilities in Cooperative Planar Manipulators, Proceeding in 14th IFToMM World Congress (IFToMM 2015), (2015).Google Scholar
  14. 14.
    Mejia, L., Simas, H., Martins, D.: Wrench capability in redundant planar parallel manipulators with net degree of constraint equal to four, five or six, Mechanism and Machine Theory, Supplement C, pp. 58-79, (2016).Google Scholar
  15. 15.
    Mejia, L., Frantz, J., Simas, H., Martins, D.: Influence of the assembly mode on the force capability in parallel manipulators, Proceeding in 23th ABCM International Congress of Mechanical Engineering (COBEM 2015), (2015).Google Scholar
  16. 16.
    Mejia, L., Frantz, J., Simas, H., Martins, D.: Wrench capability polytopes in redundant parallel manipulators, Proceeding in 23th ABCM International Congress of Mechanical Engineering (COBEM 2015), (2015).Google Scholar
  17. 17.
    Frantz, J., Mejia, L., Simas, H., Martins, D.: Analysis of wrench capability for cooperative robotic systems, Proceeding in 23th ABCM International Congress of Mechanical Engineering (COBEM 2015), (2015).Google Scholar
  18. 18.
    Tsai, L.W.: Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc., New York, NY, USA, (1999).Google Scholar
  19. 19.
    Davies, T. H.: Mechanical networks III: Wrenches on circuit screws, Mechanism and Machine Theory, pp. 107-112, (1983c).Google Scholar
  20. 20.
    Davies, T. H.: Mechanical networks I: Passivity and redundancy, Mechanism and Machine Theory, pp. 95-101, (1983a).Google Scholar
  21. 21.
    Davies, T. H.: Mechanical networks II: Formulae for the degrees of mobility and redundancy, Mechanism and Machine Theory, pp. 102-106, (1983b).Google Scholar
  22. 22.
    Weihmann, L., Martins, D., dos Santos Coelho, L.: Modified differential evolution approach for optimization of planar parallel manipulators force capabilities, Expert Systems with Applications, pp. 39, (2012).Google Scholar
  23. 23.
    Mejia, L., Simas, H., Martins, D.: Force capability in general 3DoF planar mechanisms, Mechanism and Machine Theory (91), pp. 120-134, (2015).CrossRefGoogle Scholar
  24. 24.
    Pineda, J. C., Mejia. L., Simoni, R., Simas, H.: Maximum Isotropic Force Capability Maps in Planar Cooperative Systems: A Practical Case Study, International Symposiu on Multibody Systems and Mechatronics, Springer, Cham, pp. 160-170, (2017).Google Scholar
  25. 25.
    Frantz, J., Mejia, L., Simas, H., Martins, D.: ANALYSIS OF WRENCH CAPABILITY FOR COOPERATIVE ROBOTIC SYSTEMS, Proceeding in 23th ABCM International Congress of Mechanical Engineering (COBEM 2015), (2015).Google Scholar
  26. 26.
    Muraro, T. Simas, H., Martins, D.: KINEMATIC AND STATIC ANALYSIS OF THE CABLE DRIVEN SPATIAL MECHANISM FOR BEDRIDDEN PATIENTS, Proceeding in 23th ABCM International Congress of Mechanical Engineering (COBEM 2015), (2015).Google Scholar
  27. 27.
    Mejia, L., Simas, H., Martins, D.: Force Capability Polytope of a 3RRR Planar Parallel Manipulator, Proceedings of Romansy 2014 XX CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, pp. 537-545, (2014).Google Scholar
  28. 28.
    Mejia, L., Simas, H., Martins, D.: Force Capability Polytope of a 4RRR Redundant Planar Parallel Manipulator, Advances in Robot Kinematics, pp. 87-94, (2014).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leonardo Mejia
    • 1
    Email author
  • Daniel Ponce
    • 1
  • Henrique Simas
    • 2
  • Daniel Martins
    • 2
  1. 1.Federal University of Santa CatarinaBlumenauBrazil
  2. 2.Federal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations