On the Synthesis of Periodic Linkages with a Specific Constant Poisson’s Ratio

  • F. G. J. BroerenEmail author
  • J. L. Herder
  • V. van der Wijk
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


Poisson’s ratio is one of the most studied material proper- ties that can be designed in mechanical metamaterials. However, in most studies so far, Poisson’s ratio is not constant for larger compressions. Only for structures in which ν = 1, structures with a constant Poisson’s ratio have been demonstrated. This paper studies the design of planar mechanical metamaterials with a constant Poisson’s ratio based on the pantograph, inversor, straight-line and parabolograph mechanisms. Using these classical mechanisms as building blocks, periodic mechanisms with \( v = - 1,\frac{ - 1}{2} \), 0 and 1 are proposed.


mechanical metamaterials periodic linkages auxetics Poisson’s ratio pantograph inversor straight-line mechanism parabolograph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Zadpoor, Mater. Horizons 3(5), 371 (2016).Google Scholar
  2. 2.
    K. Bertoldi, V. Vitelli, J. Christensen, M. Van Hecke, Nat. Rev. Mater. 2 (2017).Google Scholar
  3. 3.
    K.E. Evans, Endeavour 15(4), 170 (1991).CrossRefGoogle Scholar
  4. 4.
    H.A. Kolken, A.A. Zadpoor, RSC Adv. 7(9), 5111 (2017).CrossRefGoogle Scholar
  5. 5.
    X. Ren, R. Das, P. Tran, T.D. Ngo, Y.M. Xie, Smart Mater. Struct. 27(2), 023001 (2018).CrossRefGoogle Scholar
  6. 6.
    J.N. Grima, V. Zammit, R. Gatt, A. Alderson, K.E. Evans, in Phys. Status Solidi Basic Res., vol. 244 (2007), vol. 244, pp. 866–882.Google Scholar
  7. 7.
    R. Hutchinson, N. Fleck, J. Mech. Phys. Solids 54(4), 756 (2006).Google Scholar
  8. 8.
    C.S. Borcea, I. Streinu, in Proc. 4th IEEE/IFToMM Int. Conf. Reconfigurable Mech. Robot. (Delft, the Netherlands, 2018), June, pp. 20–22Google Scholar
  9. 9.
    J.N. Grima, K.E. Evans, J. Mater. Sci. Lett. 19(17), 1563 (2000).Google Scholar
  10. 10.
    J.N. Grima, R. Gatt, A. Alderson, K.E. Evans, Mol. Simul. 31(13), 925 (2005).Google Scholar
  11. 11.
    D. Attard, J.N. Grima, Phys. status solidi 245(11), 2395 (2008).Google Scholar
  12. 12.
    D. Attard, J.N. Grima, Phys. status solidi 249(7), 1330 (2012).Google Scholar
  13. 13.
    J.N. Grima, K.E. Evans, J. Mater. Sci. 41(10), 3193 (2006).Google Scholar
  14. 14.
    C.S. Borcea, I. Streinu, Proc. R. Soc. a-Mathematical Phys. Eng. Sci. 466(2121), 2633 (2010).MathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Ross, B. Schulze, W. Whiteley, Int. J. Solids Struct. 48(11), 1711 (2011).Google Scholar
  16. 16.
    C. Kittel, in Introd. to solid state Phys. (Wiley, Hoboken, NJ :, 2005), chap. 1. Crystal, p. 680.Google Scholar
  17. 17.
    E. Dijksman, Motion geometry of mechanisms. (Cambridge University Press, Cambridge, UK, 1976)Google Scholar
  18. 18.
    I.I. Artobolevskii, Mechanisms for the generation of plane curves (Pergamon Press, 1964)Google Scholar
  19. 19.
    A.B. Kempe, Proc. London Math. Soc. s1-7(1), 213 (1875).Google Scholar
  20. 20.
    T. Mullin, S. Deschanel, K. Bertoldi, M.C. Boyce, Phys. Rev. Lett. 99(8) (2007).Google Scholar
  21. 21.
    K. Bertoldi, M. Boyce, S. Deschanel, S. Prange, T. Mullin, J. Mech. Phys. Solids 56(8), 2642 (2008).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • F. G. J. Broeren
    • 1
    Email author
  • J. L. Herder
    • 1
  • V. van der Wijk
    • 1
  1. 1.Delft University of Technology, Precision and Microsystems Engineering DepartmentDelftThe Netherlands

Personalised recommendations