Advertisement

Higher- Order Cayley Maps for Minimal Parameterization of Rigid Body Motion

  • Daniel ConduracheEmail author
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The main goal of this research is the development of a new approach of minimal parameterization to the rigid body displacement and motion. Using the isomorphism between the Lie group of the rigid displacements and Lie group of the orthogonal dual tensors, a solution of the problem is given. Using the higher-order Rodrigues dual vector, dual Wiener-Milenkovic parameterization, dual orthographic projection, dual Lambert parameters and their shadows the minimal dimensional representations of this problem are obtained.

Keywords

Rigid body displacement Lie group Rodrigues dual vector minimal representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Condurache and A. Burlacu: Dual Lie Algebra Representations of the Rigid Body Motion. In: AIAA Paper, AIAA/AAS Astrodynamics Specialist Conference, 2014-4347, San Diego (2014).Google Scholar
  2. 2.
    V. Brodsky and M. Shoham: Dual Numbers Representation of Rigid Body Dynamics, Mechanism and Machine Theory, vol. 34, no. 5, 693–718 (1999).MathSciNetCrossRefGoogle Scholar
  3. 3.
    D. Condurache and A. Burlacu: On six D. O. F. Relative Orbital Motion Parametrization Using Rigid Bases of Dual Vectors. Advances in the Astronautical Sciences, vol. 150, 2293 - 2312 (2013).Google Scholar
  4. 4.
    J. Angeles: The Application of Dual Algebra to Kinematic Analysis. Computational Methods in Mechanical Systems, vol. 161, 3-32 (1998).Google Scholar
  5. 5.
    D. Condurache and A. Burlacu: Dual Tensors Based Solutions for Rigid Body Motion Parameterization. Mechanism and Machine Theory, vol. 74, no. April (2014), 390-412 (2014).CrossRefGoogle Scholar
  6. 6.
    D. Condurache and A. Burlacu: Recovering Dual Euler Parameters from Feature-Based Representation of Motion. Advances in Robot Kinematics, p. 295–305 (2014).Google Scholar
  7. 7.
    E. Pennestri and P. P. Valentini: Dual Quaternions as a Tool for Rigid Body Motion Analysis - A Tutorial with an Application to Biomechanics. The Archive of Mechanical Engineering, vol. LVII, 184 - 205 (2010).Google Scholar
  8. 8.
    E. Pennestri and P. P. Valentini: Linear Dual Algebra Algorithms and their Application to Kinematics. Multibody Dynamics - Computational Methods and Applications, vol. 12, 207-229 (2009).Google Scholar
  9. 9.
    I. Fischer: Dual-Number Methods in Kinematics. Statics and Dynamics, pp. 1-9. CRC Press (1998).Google Scholar
  10. 10.
    D. Condurache and A. Burlacu: Orthogonal dual tensor method for solving the AX = XB sensor calibration problem. Mechanism and Machine Theory, vol. 39, no. 12, 382 - 404 (2016).CrossRefGoogle Scholar
  11. 11.
    N. Filipe, A. Valverde and P. Tsiotras: Pose tracking without linearand angular-velocity feedback using dual quaternions. IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 1, 411 - 422 (2016).CrossRefGoogle Scholar
  12. 12.
    D. Condurache: On Board Complete Solution to the Full-Body Relative Orbital Motion Problem. In: 68th International Astronautical Congress, Adelaide, Australia (2017).Google Scholar
  13. 13.
    J. Angeles: Fundamentals of Robotic Mechanical Systems, Springer (2014).Google Scholar
  14. 14.
    D. Condurache and A. Burlacu: Fractional Order Cayley Transforms for Dual Quaternions based Pose Representation. Advances in the Astronautical Sciences, vol. 156, 1317 - 1339 (2016).Google Scholar
  15. 15.
    D. Condurache: Coordinate-Free decomposition of the rigid body displacement - A Davenport dual angles approach. In: DYNAMICS, M. 2. 8th ECCOMAS Thematic Conference on MULTIBODY DYNAMICS, Prague, 2017.Google Scholar
  16. 16.
    D. Condurache and A. Burlacu: Onboard Exact Solution to the Full-Body Relative Orbital Motion Problem. AIAA Journal of Guidance, Control and Dynamics, vol. 39, no. 12, 2638 - 2648 (2016).CrossRefGoogle Scholar
  17. 17.
    N. Filipe and P. Tsiotras: Adaptative Model-Independent Tracking of Rigid Body Position and Attitude Motion with Mass and Inertia Matrix Identification using Dual Quaternions. In: AIAA Guidance, Navigation and Control (GNC) Conference. AIAA Paper 2013 - 5173, Boston, Massachusettes (2013).Google Scholar
  18. 18.
    J. M. Selig: Cayley maps for SE(3). In: 12th IFToMM World Congress, Besancon (2007).Google Scholar
  19. 19.
    Y. Deng and Z. Wang: Modeling and Control for Spacecraft Relative Pose Motion by Using Twistor Representation. Journal of Guidance, Control and Dynamics, vol. 39, no. 5, 1147 - 1154 (2016).CrossRefGoogle Scholar
  20. 20.
    Y. Deng, Z. Wang and L. Liu: Unscented Kalman Filter for Spacecraft Pose Examination Using Twistors. Journal of Guidance, Control and Dynamics, vol. 39, no. 8, 1844 - 1856 (2016).CrossRefGoogle Scholar
  21. 21.
    S. Tanygin: Attitude parameterizations as higher-dimensional map projections. Journal of Guidance, Control, and Dynamics, vol. 35, no. 1, 13 - 24 (2012).CrossRefGoogle Scholar
  22. 22.
    G. Darboux: Lecons sur la Theorie Generale des Surfaces et les Applications Geometriques du Calcul Infinitesimal. Paris: Gauthier-Villars (1887).Google Scholar
  23. 23.
    D. Condurache: Poisson-Darboux prombem’s extended in dual Lie algebra. Advances in the Astronautical Sciences, vol. 162, pp. 3345-3364, 2018.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technical University of IasiIasiRomania

Personalised recommendations