Advertisement

Cuspidality Investigation of a Metamorphic Serial Manipulator.

  • C. K. Koukos-Papagiannis
  • V. C. MoulianitisEmail author
  • N. A. Aspragathos
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

In this paper a 3R orthogonal metamorphic manipulator with two pseudo-joints is investigated concerning its cuspidal anatomies. The classification of the anatomies derived by the metamorphic serial structure is achieved by solving the system of polynomials with an eliminating technique based on Groebner Basis. The metamorphic parameters space is divided into domains, according to the number of cusps. Singularity curves as well as the projection of the work-space are shown and discussed for an anatomy of each domain.

Keywords

Metamorphic manipulator Singularity Cusp Orthogonal manipulators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Part of this research has received funding by General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Code: 1184).

References

  1. 1.
    Chen, I. M.: Modular robots. in Handbook of manufacturing engineering and technology, London, Springer, 2129-2168, (2015),Google Scholar
  2. 2.
    Valsamos, C., Moulianitis, V.C., Aspragathos, N.: Index based optimal anatomy of a metamorphic manipulator for a given task. Robotics and Computer Integrated Manufacturing, (2012).Google Scholar
  3. 3.
    Borrel, P. Liegeois, A.:A Study of Manipulator Inverse Kinematic Solutions With Application to Trajectory Planning and Workspace Determination. Proc. IEEE Int. Conf. Rob. and Aut., 1180-1185, (1986)Google Scholar
  4. 4.
    Parenti, C.V., Innocenti, C.: Position Analysis of Robot Manipulators, Regions and Subregions. Proceedings of the International Conference on Advances in Robot Kinematics 150–158, (1988)Google Scholar
  5. 5.
    Burdick, J. W.: Kinematic Analysis and Design of Redundant Manipulators. Ph.D. Dissertation Stanford, CA: Stanford University, (1988)Google Scholar
  6. 6.
    Tsai, K. Y., Kholi, D.: Trajectory Planning in Task Space for General Manipulators. ASME J. Mech. Des., 115, 915–921, (1993)CrossRefGoogle Scholar
  7. 7.
    Smith, D. R., Lipkin, H.: Higher Order Singularities of Regional Manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, 194-199, (1993)Google Scholar
  8. 8.
    El Omri, J., Wenger, P.: How to Recognize Simply a Nonsingular Posture Changing 3-DOF Manipulator. Proceedings of the 7th International Conference on Advanced Robotics 215–222. (1995)Google Scholar
  9. 9.
    Corvez, S. and Rouillier, F.: Using computer algebra tools to classify serial manipulators. In International Workshop on Automated Deduction in Geometry, Springer, Berlin, Heidelberg, 31-43, (2002)Google Scholar
  10. 10.
    Baili, M: Analyse et classification de manipulateurs 3R à axes orthogonaux Ph. D. Thesis, Université de Nantes, (2004).Google Scholar
  11. 11.
    Wenger, P.:Some guidelines for the kinematic design of new Manipulators, Mech. Mach. Theory, 35(3), 437–449, (2000).CrossRefGoogle Scholar
  12. 12.
    Wenger P.: Cuspidal Robots, https://hal.archives-ouvertes.fr/hal-01377763v2/document last accessed 2018/12/15.
  13. 13.
    Wenger. P.: Design of cuspidal and noncuspidal manipulators. In Proceedings of IEEE Int. Conf. Rob. and Aut., 2172–2177, (1997).Google Scholar
  14. 14.
    Burdick. J. W.:A classification of 3R regional manipulator singularities and geometries. Mechanisms and Machine Theory, 30(1), 71–89, (1995).CrossRefGoogle Scholar
  15. 15.
    Valsamos, C., Moulianitis, V., Aspragathos, N: Kinematic synthesis of structures for metamorphic serial manipulators. Journal of Mechanisms and Robotics 6, 4 (2014)CrossRefGoogle Scholar
  16. 16.
    Moulianitis, V.C., Aspragathos, N. A. Valsamos. C.:Suboptimal Anatomy of Metamorphic Manipulators Based on the High Rotational Dexterity. In Advances in Reconfigurable Mechanisms and Robots, Springer, Cham, 509-519 (2016)Google Scholar
  17. 17.
    Lazard, D., Rouillier. F.: Solving parametric polynomial systems. INRIA Technical Report, (2004)Google Scholar
  18. 18.
    Liang, S., Gerhard, J., Jeffrey, D.J., Moroz, G.: A Package for Solving Parametric Polynomial Systems, ACM Communications in Computer Algebra 43.3/4, 61-72, (2010)Google Scholar
  19. 19.
    Wenger, P. Chablat, D., Baili, M.,: A DH-parameter based condition for 3R orthogonal manipulators to have 4 distinct inverse kinematic solutions, Journal of Mechanical Design, 127,150-155, (2005).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • C. K. Koukos-Papagiannis
    • 1
  • V. C. Moulianitis
    • 2
    Email author
  • N. A. Aspragathos
    • 1
  1. 1.Mechanical Eng and Aeronautics Dept, University of PatrasPatrasGreece
  2. 2.Dept of Product and Systems Design Eng, University of the AegeanErmoupoliGreece

Personalised recommendations