Advertisement

Tail Design of A Miniature Two-Wheg Climbing Robot for External Transitioning

  • Audelia G. Dharmawan
  • Darren C. Y. Koh
  • Gim Song SohEmail author
  • Shaohui Foong
  • Roland Bouffanais
  • Kristin L. Wood
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Plane-to-plane transitioning is essential for climbing robots to overcome obstacles. In existing literature, additional actuator or robot module is usually required for external transitioning, which significantly increases both size and weight of the robot. Recently, it has been shown [1] that a simple passive vertical tail can aid a lot in achieving external transitioning. This paper extends that finding and outlines a quasi-static kinematic procedure to design the tail shape for increased performance. The systematic approach is described, followed by a discussion of the results obtained. The outcome of the approach can be used to design the shape of the climbing robot’s tail which enhances certain criteria for transitioning, such as the adhesive and motor torque requirements.

Keywords

climbing robot external transition tail design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the support of TL@SUTD - Systems Technology for Autonomous Reconnaissance & Surveillance and SUTD-MIT International Design Center (http://idc.sutd.edu.sg)

References

  1. 1.
    D. C. Y. Koh, A. G. Dharmawan, H. H. Hariri, G. S. Soh, S. Foong, R. Bouffanais, H. Y. Low, and K. L. Wood, “Design and Analysis of A Miniature Two-Wheg Climbing Robot with Robust Internal and External Transitioning Capabilities,” in Proc. IEEE Int. Conf. Robot. Autom., in press, 2019.Google Scholar
  2. 2.
    F. Tâche, W. Fischer, R. Siegwart, R. Moser, and F. Mondada, “Compact magnetic wheeled robot with high mobility for inspecting complex shaped pipe structures,”in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 261-266, 2007.Google Scholar
  3. 3.
    G. Lee, H. Kim, K. Seo, J. Kim, and H. S. Kim, “MultiTrack: A multi-linked track robot with suction adhesion for climbing and transition,” Robot. Auton. Syst., vol. 72, pp. 207-216, 2015.CrossRefGoogle Scholar
  4. 4.
    M. Malley, M. Rubenstein, and R. Nagpal, “Flippy: A soft, autonomous climber with simple sensing and control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 6533-6540, 2017.Google Scholar
  5. 5.
    H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, and R. Kornbluh, “Electroadhesive robotswall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 3028-3033, 2008.Google Scholar
  6. 6.
    R. Sahay, H. Y. Low, A. Baji, S. Foong, and K. L. Wood, “A State-of-the-Art Review and Analysis on the Design of Dry Adhesion Materials for Applications such as Climbing Micro-robots,” RSC Adv., vol. 5, no. 63, pp. 50821-50832, 2015.CrossRefGoogle Scholar
  7. 7.
    O. Unver, and M. Sitti, “Tankbot: A miniature, peeling based climber on rough and smooth surfaces,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 2282-2287, 2009.Google Scholar
  8. 8.
    O. Unver, and M. Sitti, “A miniature ceiling walking robot with flat tacky elastomeric footpads,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 2276-2281, 2009.Google Scholar
  9. 9.
    K. A. Daltorio, T. E. Wei, S. N. Gorb, R. E. Ritzmann, and R. D. Quinn, “Passive foot design and contact area analysis for climbing mini-whegs,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 1274-1279, 2007.Google Scholar
  10. 10.
    M. P. Murphy, W. Tso, M. Tanzini, and M. Sitti, “Waalbot: An agile small-scale wall climbing robot utilizing pressure sensitive adhesives,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3411-3416, 2006.Google Scholar
  11. 11.
    A. G. Dharmawan, P. Xavier, D. Anderson, K. B. Perez, H. H. Hariri, G. S. Soh, A. Baji, R. Bouffanais, S. Foong, H. Y. Lee, and K. L. Wood, “A Bio-Inspired Miniature Climbing Robot with Bilayer Dry Adhesives: Design, Modeling, and Experimentation,” in Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inform. Eng. Conf. (IDETC/CIE), pp. V05BT07A036, 2018.Google Scholar
  12. 12.
    K. A. Daltorio, A. D. Horchler, S. Gorb, R. E. Ritzmann, and R. D. Quinn, “A small wall-walking robot with compliant, adhesive feet,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3648-3653, 2005.Google Scholar
  13. 13.
    K. A. Daltorio, T. C. Witushynsky, G. D. Wile, L. R. Palmer, A. A. Malek, M. R. Ahmad, L. Southard, S.N. Gorb, R.E. Ritzmann, and R. D. Quinn, “A body joint improves vertical to horizontal transitions of a wall-climbing robot,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 3046-3051, 2008.Google Scholar
  14. 14.
    M. P. Murphy, and M. Sitti, “Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives,” IEEE/ASME Trans. Mechatronics, vol. 12, no. 3, pp. 330-338, 2007.CrossRefGoogle Scholar
  15. 15.
    W. A. Breckwoldt, K. A. Daltorio, L. Heepe, A. D. Horchler, S. N. Gorb, and R. D. Quinn, “Walking inverted on ceilings with wheel-legs and micro-structured adhesives,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3308-3313, 2015.Google Scholar
  16. 16.
    O. Unver, and M. Sitti, “Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads,” Int. J. Robot. Res., vol. 29, no. 14, pp. 1761-1777, 2010.Google Scholar
  17. 17.
    T. Seo, and M. Sitti, “Tank-like module-based climbing robot using passive compliant joints,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 1, pp. 397-408, 2013.CrossRefGoogle Scholar
  18. 18.
    M. P. Murphy, C. Kute, Y. Meng, and M. Sitti, “Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives,” Int. J. Robot. Res., vol. 30, no. 1, pp. 118-133, 2011.Google Scholar
  19. 19.
    H. H. Hariri, D. C. Y. Koh, H. C. Lim, A. G. Dharmawan, V. D. Nguyen, G. S. Soh, S. Foong, R. Bouffanais, H. Y. Low, and K. L. Wood, “ORION-II: A Miniature Climbing Robot with Bilayer Compliant Tape for Autonomous Intelligent Surveillance and Reconnaissance,” in Proc. IEEE 15th Int. Conf. Control Autom. Robot. Vis. (ICARCV), pp. 1621-1626, 2018.Google Scholar
  20. 20.
    A. G. Dharmawan, P. Xavier, H. H. Hariri, G. S. Soh, A. Baji, R. Bouffanais, S. Foong, H. Y. Lee, and K. L. Wood, “Design, Modeling and Experimentation of a Bio-Inspired Miniature Climbing Robot with Bilayer Dry Adhesives,” J. Mech. Robot, vol. 11, no. 2, pp. 020902, 2019.CrossRefGoogle Scholar
  21. 21.
    H. Shahsavan, and B. Zhao, “Bioinspired functionally graded adhesive materials: synergetic interplay of top viscouselastic layers with base micropillars,” Macromolecules, vol. 47, no. 1, 353-364, 2013.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Audelia G. Dharmawan
    • 1
  • Darren C. Y. Koh
    • 1
  • Gim Song Soh
    • 1
    Email author
  • Shaohui Foong
    • 1
  • Roland Bouffanais
    • 1
  • Kristin L. Wood
    • 1
  1. 1.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations