Advertisement

Feedforward control for the kinematically redundant manipulator 3PRRR

  • João Vitor Carvalho FontesEmail author
  • Natássya Barlate Floro da Silva
  • Maíra Martins da Silva
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The control of parallel manipulator is more complex when compared to serial manipulators due to their coupled dynamics. In addition, parallel manipulators present singularities inside their workspace which can be avoided using kinematic redundancy. In the kinematic redundancy, an active joint is added to the kinematic chain, which increases the system’s degree of freedom and enables the movement of the manipulator links without moving the end-effector. Since the control of parallel manipulator is complex, the control of kinematically redundant parallel manipulator can be challenging. In this manuscript, the prototype of 3PRRR manipulator is a planar parallel manipulator with three degrees of redundancy. Two different control schemes are compared, one uses only PID structures and other uses the same PID structure with a feedforward control based on the inverse dynamic model. The results show the control with the feedforward signal reaches better performance considering the joints errors and the applied torques.

Keywords

parallel manipulator kinematic redundancy control experimental verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merlet, J.P.: Redundant parallel manipulators. Laboratory Robotics and Automation 8(1), 17–24 (1996)CrossRefGoogle Scholar
  2. 2.
    Merlet, J.P.: Still a long way to go on the road for parallel mechanisms. Proc. ASME Int. Mech. Eng. Congress and Exhibition (October 2002), 95–99 (2002)Google Scholar
  3. 3.
    Paccot, F., Andref, N., Martinet, P.: Review on the dynamic control of parallel kinematic machines: Theory and experiments. The International Journal of Robotics Research 28(3), 395–416 (2009).  https://doi.org/10.1177/0278364908096236CrossRefGoogle Scholar
  4. 4.
    Thanh, T.D., Kotlarski, J., Heimann, B., Ortmaier, T.: Dynamics identification of kinematically redundant parallel robots using the direct search method. Mechanism and Machine Theory 52, 277–295 (2012).  https://doi.org/10.1016/j.mechmachtheory.2012.02.002CrossRefGoogle Scholar
  5. 5.
    Kotlarski, J., Heimann, B., Ortmaier, T.: Experimental validation of the influence of kinematic redundancy on the pose accuracy of parallel kinematic machines. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 1923–1929. Shanghai, China (2011).  https://doi.org/10.1109/ICRA.2011.5980056
  6. 6.
    Müller, A.: On the Terminology for Redundant Parallel Manipulators. In: Volume 2: 32nd Mechanisms and Robotics Conference, vol. 2, pp. 1121–1130. ASME, Brooklyn, New York, USA (2008).  https://doi.org/10.1115/DETC2008-49112
  7. 7.
    Kotlarski, J., Abdellatif, H., Ortmaier, T., Heimann, B.: Enlarging the useable workspace of planar parallel robots using mechanisms of variable geometry. In: Reconfigurable Mechanisms and Robots, 2009. ReMAR 2009. ASME/IFToMM International Conference on, pp. 63–72. London, UK (2009)Google Scholar
  8. 8.
    Mohamed, M.G., Gosselin, C.M.: Design and analysis of kinematically redundant parallel manipulators with configurable platforms. Robotics, IEEE Transactions on 21(3), 277–287 (2005).  https://doi.org/10.1109/TRO.2004.837234CrossRefGoogle Scholar
  9. 9.
    Cha, S.H., Lasky, T.A., Velinsky, S.A.: Singularity Avoidance for the 3-RRR Mechanism Using Kinematic Redundancy. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1195–1200. IEEE, Rome, Italy (2007).  https://doi.org/10.1109/ROBOT.2007.363147
  10. 10.
    Kotlarski, J., Abdellatif, H., Heimann, B.: Improving the pose accuracy of a planar 3RRR parallel manipulator using kinematic redundancy and optimized switching patterns. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 3863–3868. Pasadena, CA, USA (2008).  https://doi.org/10.1109/ROBOT.2008.4543804
  11. 11.
    Xie, F., Liu, X.J., Wang, J.: Performance Evaluation of Redundant Parallel Manipulators Assimilating Motion/Force Transmissibility. International Journal of Advanced Robotic Systems 8(5), 113–124 (2011)CrossRefGoogle Scholar
  12. 12.
    Fontes, J.V.C., Santos, J.C., Da Silva, M.M.: Optimization strategies for actuators of kinematically redundant manipulators to achieve high dynamic performance. In: Robotics: SBR-LARS Robotics Symposium and Robocontrol, 2014 Joint Conference on, pp. 31–36. São Carlos, Brazil (2014).  https://doi.org/10.1109/SBR.LARS.Robocontrol.2014.32
  13. 13.
    Wu, J., Wang, J., You, Z.: A comparison study on the dynamics of planar 3-DOF 4-RRR, 3-RRR and 2-RRR parallel manipulators. Robotics and Computer-Integrated Manufacturing 27(1), 150–156 (2011).  https://doi.org/10.1016/j.rcim.2010.07.001CrossRefGoogle Scholar
  14. 14.
    Fontes, J.V., da Silva, M.M.: On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies. Mechanism and Machine Theory 103, 148–166 (2016).  https://doi.org/10.1016/j.mechmachtheory.2016.05.004CrossRefGoogle Scholar
  15. 15.
    Ruiz, A.G., Fontes, J.V.C., da Silva, M.M.: The Impact of Kinematic and Actuation Redundancy on the Energy Efficiency of Planar Parallel Kinematic Machines. In: Proceedings of 17th International Symposium on Dynamic Problems of Mechanics. Natal, Brazil (2015)Google Scholar
  16. 16.
    Luces, M., Mills, J.K., Benhabib, B.: A Review of Redundant Parallel Kinematic Mechanisms. Journal of Intelligent and Robotic Systems: Theory and Applications pp. 1–24 (2016).  https://doi.org/10.1007/s10846-016-0430-4, http://link.springer.com/10.1007/s10846-016-0430-4CrossRefGoogle Scholar
  17. 17.
    Wu, J., Wang, J., Wang, L., You, Z.: Performance comparison of three planar 3-DOF parallel manipulators with 4-RRR, 3-RRR and 2-RRR structures. Mechatronics 20(4), 510–517 (2010).  https://doi.org/10.1016/j.mechatronics.2010.04.012CrossRefGoogle Scholar
  18. 18.
    Fontes, J.V.C., Santos, J.C., da Silva, M.M.: Numerical and experimental evaluation of the dynamic performance of kinematically redundant parallel manipulators. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40(3), 142 (2018).  https://doi.org/10.1007/s40430-018-1072-1. URL http://link.springer.com/10.1007/s40430-018-1072-1
  19. 19.
    Fontes, J.V.C., da Silva, M.M.: Simulation and experimental verification of a global redundancy resolution for a 3prrr prototype. In: J.C.M. Carvalho, D. Martins, R. Simoni, H. Simas (eds.) Multibody Mechatronic Systems, pp. 315–324. Springer International Publishing, Cham (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • João Vitor Carvalho Fontes
    • 1
    Email author
  • Natássya Barlate Floro da Silva
    • 2
  • Maíra Martins da Silva
    • 1
  1. 1.São Carlos School of EngineeringUniversity of São PauloSão CarlosBrazil
  2. 2.Federal University of Technology - ParanáCornélio ProcópioBrazil

Personalised recommendations