Advertisement

Mechanism Design and Kinematics Analysis of a Bio-Inspired Flexible Flapping Wing

  • Huang Cheng
  • Liu YuhongEmail author
  • Zhu Yaqiang
  • Cai Kelun
  • Zhang Hongwei
  • Wang Shuxin
  • Wang Yanhui
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The flapping wing presented in this paper is a novel bio-inspired underwater propulsor which emulates the swimming mode of manta ray. A combined mechanism with two sub-mechanisms, which has two degrees of freedom, namely flapping motion and chord-wise twisting, is proposed and designed to realize the similar flapping motion of manta ray. The sub-mechanism in wing- span direction, which is a two-section structure with single-slider-double-rocker mechanism, can achieve the active flapping motion of the basal part and the follow-up motion of the distal part. The sub-mechanism in chord-wise direction, which is designed to be a distributed flexibility structure, can achieve the active twisting motion of the leading part and the passive deformation of the trailing part. The direct kinematics analysis shows that the designed mechanism have good continuity and the attitude angle of the flapping wing can \( \left[ {{\raise0.7ex\hbox{${ - \pi }$} \!\mathord{\left/ {\vphantom {{ - \pi } 4}}\right.\kern-0pt} \!\lower0.7ex\hbox{$4$}},{\raise0.7ex\hbox{$\pi $} \!\mathord{\left/ {\vphantom {\pi 4}}\right.\kern-0pt} \!\lower0.7ex\hbox{$4$}}} \right] \). The control rules of motors are obtained through the inverse kinematics analysis.

Keywords

Bio-inspired Propulsion Flapping Wing Kinematics Analysis Manta Ray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51675372), Sea Planning of Qingdao National Laboratory for Marine Science and Technology (Grant No. 2017WHZZB0303), and Tianjin science and technology commissioners project (No. 18JCTPJC49100). The authors also would like to express their sincere thanks to L. Ma for her helping to improve the grammar.

References

  1. 1.
    Lionel, L.: Underwater Robots Part I: Current Systems and Problem Pose. Mobile Robots: Towards New Applications. (2006).  https://doi.org/10.5772/4697Google Scholar
  2. 2.
    Lionel, L.: Underwater Robots Part II: Existing Solutions and Open Issues. Mobile Robots: Towards New Applications. (2006).  https://doi.org/10.5772/4698Google Scholar
  3. 3.
    Yu, J., Tan, M., Wang, S., Chen, E.: Development of a Biomimetic Robotic Fish and Its Control Algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34(4), 1798–1810(2004).  https://doi.org/10.1109/tsmcb.2004.831151CrossRefGoogle Scholar
  4. 4.
    Junzhi Yu, Long Wang. (n.d.).: Parameter Optimization of Simplified Propulsive Model for Biomimetic Robot Fish. Proceedings of the 2005 IEEE International Conference on Robotics and Automation.  https://doi.org/10.1109/robot.2005.1570620
  5. 5.
    Hu, H., Liu, J., Dukes, I., Francis, G.: Design of 3D Swim Patterns for Autonomous Robotic Fish. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. (2006).  https://doi.org/10.1109/iros.2006.281680
  6. 6.
    Rosenberger, L. J.: Pectoral fin locomotion in batoid fishes: undulation versus oscillation. Journal of Experimental Biology 204(2), 379-394 (2001).Google Scholar
  7. 7.
    Lindsey, C. C.: Form, Function, and Locomotory Habits in Fish. Locomotion, 1–100 (1978).  https://doi.org/10.1016/s1546-5098(08)60163-6Google Scholar
  8. 8.
    Fish, F., Schreiber, C., Moored, K., Liu, G., Dong, H., Bart-Smith, H.: Hydrodynamic Per- formance of Aquatic Flapping: Efficiency of Underwater Flight in the Manta. Aerospace, 3(3), 20(2016).  https://doi.org/10.3390/aerospace3030020CrossRefGoogle Scholar
  9. 9.
    Ozmen Koca, G., Bal, C., Korkmaz, D., Bingol, M., Ay, M., Akpolat, Z., Yetkin, S.: Three-Dimensional Modeling of a Robotic Fish Based on Real Carp Locomotion. Applied Sciences, 8(2), 180(2018).  https://doi.org/10.3390/app8020180CrossRefGoogle Scholar
  10. 10.
    Flammang, B. E., Lauder, G. V.: Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus. Journal of Experimental Biology, 212(2) (2008). 277–286.  https://doi.org/10.1242/jeb.021360CrossRefGoogle Scholar
  11. 11.
    Low, K. H., Willy, A.: Biomimetic Motion Planning of an Undulating Robotic Fish Fin. Journal of Vibration and Control, 12(12), 1337–1359 (2006).  https://doi.org/10.1177/1077546306070597CrossRefGoogle Scholar
  12. 12.
    Zhou, C., Low, K.-H.: Better Endurance and Load Capacity: An Improved Design of Manta Ray Robot (RoMan-II). Journal of Bionic Engineering, 7, S137–S144 (2010).  https://doi.org/10.1016/s1672-6529(09)60227-4CrossRefGoogle Scholar
  13. 13.
    Low, K. H., Zhou, C., Seet, G., Bi, S., Cai, Y.: Improvement and testing of a robotic manta ray (RoMan-III). 2011 IEEE International Conference on Robotics and Biomimetics. (2011).  https://doi.org/10.1109/robio.2011.6181539
  14. 14.
    Gliva, R., Mountoufaris, M., Spyridakis, N., Sfakiotakis, M.: Development of a bio-inspired underwater robot prototype with undulatory fin propulsion. In: Proc. NHIBE’15, pp. 81-86 (2015).Google Scholar
  15. 15.
    Zhong, Y., Li, Z., Du, R.: Robot fish with two-DOF pectoral fins and a wire-driven caudalfin. Advanced Robotics, 32(1), 25–36 (2017).  https://doi.org/10.1080/01691864.2017.1392344CrossRefGoogle Scholar
  16. 16.
    Chi, W., Low, K. H.: Review and Fin Structure Design for Robotic Manta Ray (RoMan IV). Journal of Robotics and Mechatronics, 24(4), 620–628 (2012).  https://doi.org/10.20965/jrm.2012.p0620CrossRefGoogle Scholar
  17. 17.
    Moored, K. W., Kemp, T. H., Houle, N. E., Bart-Smith, H.: Analytical predictions, optimi- zation, and design of a tensegrity-based artificial pectoral fin. International Journal of Solids and Structures, 48(22-23), 3142–3159 (2011).  https://doi.org/10.1016/j.ijsolstr.2011.07.008CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Huang Cheng
    • 1
  • Liu Yuhong
    • 1
    Email author
  • Zhu Yaqiang
    • 1
  • Cai Kelun
    • 1
  • Zhang Hongwei
    • 1
  • Wang Shuxin
    • 1
  • Wang Yanhui
    • 1
  1. 1.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical EngineeringTianjin UniversityTianjinChina

Personalised recommendations