Advertisement

Dynamic modeling and control of a tensegrity manipulator mimicking a bird neck

  • Benjamin Fasquelle
  • Matthieu Furet
  • Christine Chevallereau
  • Philippe Wenger
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper studies a tensegrity manipulator mimicking a bird neck. This manipulator is built upon assembling several X-shape one-dof tensegrity mechanisms in series. A methodology is proposed to derive the dynamic model using Lagrange’s equations. The dynamic model is used to design a dynamic control law. This control law is applied to a backward-and-forward motion between an S-shape rest equilibrium configuration and a straight configuration of the neck manipulator. Simulation results show a much better tracking as compared with a classical PD control.

Keywords

Tensegrity bird neck model dynamic control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was conducted with the support of the French National Research Agency (AVINECK Project ANR-16-CE33-0025).

References

  1. 1.
    Motro, R. Tensegrity systems: the state of the art, Int. J. of Space Structures, 7 (2), pp 75–83, 1992CrossRefGoogle Scholar
  2. 2.
    K. Snelson, 1965, Continuous Tension, Discontinuous Compression Structures, US Patent No. 3,169,611Google Scholar
  3. 3.
    R. B. Fuller, Tensile-integrity structures, United States Patent 3063521,1962Google Scholar
  4. 4.
    Skelton, R. and de Oliveira, M., Tensegrity Systems. Springer, 2009Google Scholar
  5. 5.
    M. Arsenault and C. M. Gosselin, Kinematic, static and dynamic analysis of a planar 2-dof tensegrity mechanism, Mech. and Mach. Theory, Vol. 41(9), 1072-1089, 2006MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Crane et al., Kinematic analysis of a planar tensegrity mechanism with presstressed springs, in Advances in Robot Kinematics: analysis and design, pp 419-427, J. Lenarcic and P. Wenger (Eds), Springer (2008)Google Scholar
  7. 7.
    P. Wenger and D. Chablat, Kinetostatic Analysis and Solution Classification of a Planar Tensegrity Mechanism, proc. 7th. Int. Workshop on Comp. Kinematics, Springer, ISBN 978-3-319-60867-9, pp422-431, 2017.Google Scholar
  8. 8.
    Q. Boehler, M. Vedrines, S. Abdelaziz, P. Poignet, P. Renaud, Design and evaluation of a novel variable stiffness spherical joint with application to MR-compatible robot design. In Robotics and Automation (ICRA), 2016 IEEE International Conference on (pp. 661-667).Google Scholar
  9. 9.
    S. Levin, The tensegrity-truss as a model for spinal mechanics: biotensegrity, J. of Mechanics in Medicine and Biology, Vol. 2(3), 2002Google Scholar
  10. 10.
    G. Zweers, R. Bout, and J. Heidweiller, Perception and Motor Control in Birds: An Eco- logical Approach. Springer, 1994, ISBN: 978-3-642-75869-0.Google Scholar
  11. 11.
    Q. Boehler et al., Definition and computation of tensegrity mechanism workspace, ASME J. of Mechanisms and Robotics, Vol 7(4), 2015CrossRefGoogle Scholar
  12. 12.
    A. Van Riesen et al, Dynamic Analysis and Control of an Antagonistically Actuated Tensegrity Mechanism, in Romansy 22 – Robot Design, Dynamics and Control, Spinger, ISBN: 978-3-319-78962-0, 2018Google Scholar
  13. 13.
    JB Aldrich and RE Skelton, Time-energy optimal control of hyper-actuated mechanical systems with geometric path constraints, in 44th IEEE Conference on Decision and Control, pp 8246-8253, 2005Google Scholar
  14. 14.
    S. Chen and M. Arsenault, Analytical Computation of the Actuator and Cartesian Workspace Boundaries for a Planar 2-Degree-of-Freedom Translational Tensegrity Mechanism, Journal of Mech. and Rob., Vol. 4, 2012Google Scholar
  15. 15.
    D. L Bakker et al., Design of an environmentally interactive continuum manipulator, Proc.14th IFToMM World Congress in Mechanisms and Machine Science, Taipei, Taiwan, 2015Google Scholar
  16. 16.
    A. Van Riesen et al, Optimal Design of Tensegrity Mechanisms Used in a Bird Neck Model, in EuCoMeS2018: Proceedings of the 7th European Conference on Mechanism Science, Springer, ISBN: 978-3-319-98019-95Google Scholar
  17. 17.
    M. Furet et al., Kinematic analysis of planar tensegrity 2-X manipulators, Proc. 16th International Symposium on Advances in Robot Kinematics, Bologna, Italia, 2018Google Scholar
  18. 18.
    M. Furet et al., Workspace and cuspidality analysis of a 2-X planar manipulator, Proc. 4th IFToMM Symposium on Mechanism Design for Robotics, Udine, Italia, 2018Google Scholar
  19. 19.
    W. Khalil and E. Dombre, Modeling, identification and control of robots. HPS, 2002Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benjamin Fasquelle
    • 1
  • Matthieu Furet
    • 1
  • Christine Chevallereau
    • 1
  • Philippe Wenger
    • 1
  1. 1.Laboratoire des Sciences du Numérique de Nantes (LS2N)CNRS, Ecole centrale de NantesNantesFrance

Personalised recommendations