Advertisement

On the Dynamics of a Ball Rolling on a Tipping Plane

  • L. P. LausEmail author
  • J. M. Selig
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

The model of a ball rolling on an inclined plane is derived using screw theory and Lie algebra. The plane is supported by a gimbal and the inclination can be controlled in two orthogonal directions. The model includes effects due gravity, Coriolis and centripetal torques. Keywords: screw theory; Lie algebra; dynamic model; ball rolling on plane; control, simulation.

Keywords

screw theory Lie algebra dynamic model ball rolling on plane control simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrachev, A.A., Sachkov, Y.L.: An intrinsic approach to the control of rolling bodies. In: Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), vol. 1, pp. 431–435 (1999)Google Scholar
  2. 2.
    Byrnes, C., Isidori, A., Willems, J.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control 36(11), 1228–1240 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Craig, J.J.: Introduction to robotics : mechanics and control, 3rd edn. Pearson, Upper Saddle River (2004)Google Scholar
  4. 4.
    Goldstein, H., Charles P. Poole, J., Safko, J.L.: Classical mechanics. Addison-Wesley, San Francisco (2000)Google Scholar
  5. 5.
    Khalil, H.K.: Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River (2001)Google Scholar
  6. 6.
    Laus, L.P., Moreno, U.F., de Pieri, E.R., de Bona Castelan Neto, E.: Passivity based control of a 3D overhead crane. In: Proceedings of COBEM 2009. ABCM, Brazilian Society of Mechanical Sciences and Engineering, Gramado (2009)Google Scholar
  7. 7.
    Lemos, N.A.: Analytical mechanics. Cambridge, Cambridge (2018). DOI  https://doi.org/10.1017/9781108241489. URL https://www.cambridge.org/9781108416580
  8. 8.
    Park, J.H., Lee, Y.J.: Robust visual servoing for motion control of the ball on a plate. Mechatronics 13(7), 723–738 (2003)CrossRefGoogle Scholar
  9. 9.
    Selig, J.M.: Geometric fundamentals of robotics, 2nd edn. Monographs in Computer Science. Springer (2005)Google Scholar
  10. 10.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics : modelling, planning and control. Advanced Textbooks in Control and Signal Processing. Springer, London (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal University of Technology – Paraná (UTFPR)Curitiba - PRBrazil
  2. 2.School of Engineering, London South Bank UniversityLondonU.K.

Personalised recommendations