Advertisement

Smooth path planning for redundant robots on collision avoidance

  • Henrique SimasEmail author
  • Daniel Martins
  • Raffaele Di Gregorio
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper presents a new algorithm for programming secondary tasks for redundant robots under and out of the collision imminence. For the collision avoidance, the new algorithm uses the concept of Assur virtual chains, together with interpolations based on cubic Bézier polynomials, taking advantage of its properties in terms of continuities, for smoothing the transitions between tasks. Out of collision condition, the redundancy is addressed by the method of Adaptive Extended Jacobian. This set of strategies, acting together, results in a stable algorithm and in smooth trajectory profiles for redundant robots avoiding collisions. An application using a redundant P3R-planar robot is developed, and graphical comparative analyzes are presented.

Keywords

Redundant robots Collision avoidance Smooth transitions Adaptive extended Jacobian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies, T. H.: Kirchhoff’s circulation law applied to multi-loop kinematic chain. Mech. Mach. Theory 16(3), 171-183 (1981).CrossRefGoogle Scholar
  2. 2.
    Campos, A., Guenther, R., Martins, D.: Differential kinematics of serial manipulators using virtual chains. J. B. Soc. Mechanical Sciences & Engineering, 27(4), 345-356 (2005).Google Scholar
  3. 3.
    Simas, H., Guenther, R., Da Cruz, D., Martins, D.: A new method to solve robot inverse kinematics using Assur virtual chains. Robotica, 27(7), 1017-1026 (2009).CrossRefGoogle Scholar
  4. 4.
    Simas, H., Di Gregorio, R.: Adaptive extended Jacobian can improve Global Conditioning Index of redundant robots. In: (IDETC/CIE 2018) - ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Quebec-City – CA (2018).Google Scholar
  5. 5.
    Wang, X., Chenguang, Y., Chen, J., Ma, H., Liu, F.: Obstacle avoidance for kinematically redundant robot. IFAC (IFAC-PapersOnLine), 48(28), 490-495 (2015).Google Scholar
  6. 6.
    Petrič, T., Gams, A., Likar, N., Žlajpah, L.: Obstacle avoidance with industrial robots. Mech. Mach. Theory, 29, 113-145 (2015).Google Scholar
  7. 7.
    Simas, H., Cruz, D.F.M., Martins, D.: Smooth transitions in trajectory profiles for redundant robots performing secondary tasks. In: ABCM Symposium Series Mechatronic. 1st ed.: ABCM, 5, 994-1004 (2005).Google Scholar
  8. 8.
    Rubio, F., Llopis-Albert, C., Valero. F., Lluis Suñer, J.: Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory, Robotics and Autonomous Systems, 86, 106-112 (2016).CrossRefGoogle Scholar
  9. 9.
    Pedrocchi, N., Malosio M., Tosatti, L. M.: Safe obstacle avoidance for industrial robot working without fences. Proc. of IEEE/RSJ Int.Conf. on Intelligent Robots and Systems, St. Louis, MO, 3435-3440 (2009).Google Scholar
  10. 10.
    Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: A survey, Robotics and Autonomous Systems, 94, 43-52 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal University of Santa CatarinaFlorianópolisBrazil
  2. 2.University of FerraraFerraraItaly

Personalised recommendations