Dynamics of a Humanoid Robot with Parallel Architectures

  • Matteo RussoEmail author
  • Marco Ceccarelli
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


This paper describes a modular approach to formulate a dynamic model for LARMbot 2, a humanoid robot that is designed as based on parallel architectures. First, the main advantages and issues of parallel architectures in humanoid robots are briefly analyzed. Then, the mechanical design of LARMbot 2 is described with its modules, namely legs, arms, torso and head. An analysis of its degrees of freedom is reported, and the center-of-gravity Jacobian is evaluated for each module by using its kinematics. Finally, the result is used to formulate the equation of motion of LARMbot 2, in order to obtain walking balance of the robot by coordinating the motion of all the modules.


Robotics Humanoid robots Parallel mechanisms Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carbone, G., Ceccarelli, M. (2005). Legged robotic systems. In Cutting Edge Robotics. InTech.Google Scholar
  2. 2.
    Ceccarelli, M. (2013). Fundamentals of mechanics of robotic manipulation. Springer.Google Scholar
  3. 3.
    Csonka, P. J., Waldron, K. J. (2011). A brief history of legged robotics. In Technology Developments: The Role of Mechanism and Machine Science and IFToMM, Springer, 59-73.Google Scholar
  4. 4.
    Lim, H. O., Takanishi, A. (2007). Biped walking robots created at Waseda University: WL and WABIAN family. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1850), 49-64.CrossRefGoogle Scholar
  5. 5.
    Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., Kanade, T. (2005). Footstep planning for the honda asimo humanoid. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 629-634.Google Scholar
  6. 6.
    Gouaillier, D., Collette, C., Kilner, C. (2010). Omni-directional closed-loop walk for NAO. 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), 448-454.Google Scholar
  7. 7.
    Boston Dynamics (2018). Atlas. Available online at, accessed on 22/01/2018.
  8. 8.
    Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., Bernardino, A. (2010). The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural Networks, 23(8-9), 1125-1134.CrossRefGoogle Scholar
  9. 9.
    Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V. G., Natale, L. (2017). WALK‐MAN: A High‐Performance Humanoid Platform for Realistic Environments. Journal of Field Robotics, 34(7), 1225-1259.CrossRefGoogle Scholar
  10. 10.
    Lafaye, J., Gouaillier, D., Wieber, P. B. (2014, November). Linear model predictive control of the locomotion of Pepper, a humanoid robot with omnidirectional wheels. In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on (pp. 336-341).Google Scholar
  11. 11.
    Ogura, Y., Aikawa, H., Shimomura, K., Morishima, A., Lim, H. O., Takanishi, A. (2006, May). Development of a new humanoid robot WABIAN-2. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 76-81).Google Scholar
  12. 12.
    Jung, H. W., Seo, Y. H., Ryoo, M. S., Yang, H. S. (2004, November). Affective communi- cation system with multimodality for a humanoid robot, AMI. In Humanoid Robots, 2004 4th IEEE/RAS International Conference on (Vol. 2, pp. 690-706).Google Scholar
  13. 13.
    Tellez, R., Ferro, F., Garcia, S., Gomez, E., Jorge, E., Mora, D., Faconti, D. (2008, December). Reem-B: An autonomous lightweight human-size humanoid robot. In Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Conference on (pp. 462-468).Google Scholar
  14. 14.
    Asfour, T., Berns, K., Dillmann, R. (2000, September). The humanoid robot ARMAR: Design and control. In The 1st IEEE-ras international conference on humanoid robots (human- oids 2000) (pp. 7-8).Google Scholar
  15. 15.
    Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., Dillmann, R. (2006, December). ARMAR-III: An integrated humanoid platform for sensory- motor control. In Humanoid Robots, 2006 6th IEEE-RAS International Conference on (pp. 169-175).Google Scholar
  16. 16.
    Vukobratović, M., Borovac, B. (2004). Zero-moment point—thirty five years of its life. In- ternational journal of humanoid robotics, 1(01), 157-173.Google Scholar
  17. 17.
    Sugihara, T., Nakamura, Y., Inoue, H. (2002, May). Realtime humanoid motion generation through ZMP manipulation based on inverted pendulum control. In icra (Vol. 2, pp. 1404-1409).Google Scholar
  18. 18.
    Nakaura, S., Sampei, M. (2002). Balance control analysis of humanoid robot based on ZMP feedback control. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on (Vol. 3, pp. 2437-2442).Google Scholar
  19. 19.
    Erbatur, K., Okazaki, A., Obiya, K., Takahashi, T., Kawamura, A. (2002). A study on the zero moment point measurement for biped walking robots. In Advanced Motion Control, 2002. 7th International Workshop on (pp. 431-436).Google Scholar
  20. 20.
    Sardain, P., Bessonnet, G. (2004). Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 34(5), 630-637.CrossRefGoogle Scholar
  21. 21.
    Sugihara, T., Nakamura, Y. (2002). Whole-body cooperative balancing of humanoid robot using cog jacobian. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on (Vol. 3, pp. 2575-2580).Google Scholar
  22. 22.
    Sonoda, T., Ishii, K., Isobe, D. (2008, July). Dynamics computation of link mechanisms employing cog jacobian. In Advanced Intelligent Mechatronics, 2008. AIM 2008. IEEE/ASME International Conference on (pp. 482-487).Google Scholar
  23. 23.
    Wang, H., Sang, L., Zhang, X., Kong, X., Liang, Y., Zhang, D. (2012). Redundant actuation research of the quadruped walking chair with parallel leg mechanism. In IEEE International Conference on Robotics and Biomimetics (ROBIO), 223-228.Google Scholar
  24. 24.
    Sugahara, Y., Carbone, G., Hashimoto, K., Ceccarelli, M., Lim, H. O., Takanishi, A. (2007). Experimental stiffness measurement of WL-16RII biped walking vehicle during walking operation. Journal of Robotics and Mechatronics, 19(3), 272-280.Google Scholar
  25. 25.
    Wang, M., Carbone, G., Ceccarelli, M. (2015). Stiffness Analysis for a Tripod Leg Mecha- nism. In Proceedings of the 14th IFToMM World Congress, 404-410.Google Scholar
  26. 26.
    Knudson, D. (2007). Fundamentals of biomechanics. Springer, Dordrecht.Google Scholar
  27. 27.
    Cafolla, D., Wang, M.F., Carbone, G., Ceccarelli, M. (2016). LARMbot: a new humanoid robot with parallel mechanisms. Robot Design, Dynamics and Control: Proceedings of ROMANSY 2016, 21st CISM-IFToMM Symposium on Robot Design, Dynamics, and Control, pp. 275-284, Springer.Google Scholar
  28. 28.
    Ceccarelli, M., Cafolla, D., Russo, M., Carbone, G. (2017). LARMBot Humanoid Design Towards a Prototype. MOJ Applied Bionics and Biomechanics 1(2): 00008.Google Scholar
  29. 29.
    Russo M., Ceccarelli M., Cafolla D., Matsuura D., Takeda Y. (2018). An Experimental Characterization of a Parallel Leg Mechanism for Robotic Legs. ROMANSY 22 – Robot Design, Dynamics and Control, CISM, Springer, 584:18-25.Google Scholar
  30. 30.
    Russo M., Cafolla D., Ceccarelli M. (2018). Development of LARMbot 2, a novel humanoid robot with parallel architectures. Mechanism Design for Robotics, Mechanism and Machine Science, Springer, Cham, 66:17-24.Google Scholar
  31. 31.
    Russo, M., Ceccarelli, M., Takeda, Y. (2017). Force transmission and constraint analysis of a 3-SPR parallel manipulator. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, Scholar
  32. 32.
    Russo, M., Herrero, S., Altuzarra, O., Ceccarelli, M. (2018). Kinematic Analysis and multi- objective optimization of a 3-UPR parallel mechanism for a robotic leg. Mechanism and Machine Theory, Volume 120, February 2018, Pages 192-202.CrossRefGoogle Scholar
  33. 33.
    Cafolla, D., Ceccarelli, M. (2016). Design and simulation of a cable-driven vertebra-based humanoid torso. International Journal of Humanoid Robotics, Vol. 13, No. 4, 10.1142/S0219843616500158, pp. 1650015-1−1650015-27.CrossRefGoogle Scholar
  34. 34.
    Cafolla, D., Ceccarelli, M. (2017). An Experimental Validation of a Novel Humanoid Torso. Robotics and Autonomous Systems.Google Scholar
  35. 35.
    Cafolla, D., Ceccarelli, M., Wang, M. F., Carbone, G. (2016). 3D printing for feasibility check of mechanism design. International Journal of Mechanics and Control, 17(1), 3-12.Google Scholar
  36. 36.
    Russo M., Ceccarelli M. (2018). Kinematic design of a tripod parallel mechanism for robotic legs. Mechanisms, Transmissions and Applications, Mechanism and Machine Science, Springer, Cham, 52:121-130.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LARM: Laboratory of Robotics and MechatronicsUniversity of Cassino and Southern LatiumCassinoItaly

Personalised recommendations