Road Bank and Road Grade Angles Estimation for a Double Steering Off-Road Mobile Robot

  • Mohamed FnadiEmail author
  • Frédéric Plumet
  • Faïz Ben Amar
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


Mobile robots need efficient and robust sensing methods and control laws to ensure high accuracy and stability. The path tracking control law based on the dynamic model has already been designed, taking into account wheel-ground contact conditions and road geometry parameters. For the sliding parameters, a new nonlinear observer was previously designed to estimate on-line the front & rear tire cornering stiffnesses. Moreover, the road geometry parameters need also to be identified in real time to adjust the gravity components. For this purpose, a linear Road-Angle Observer (RAO) is designed in this paper to estimate the on-line grade and bank road angles. The capabilities of such an observer are shown and discussed through numerical simulations using an advanced physical engine.


Double steering Path tracking Dynamic model Sliding Road grade Road bank 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cariou, C., Lenain, R., Thuilot, B., Berducat, M.: Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. In: Journal of Field Robotics, vol. 26, pp. 504–518, 2009.CrossRefGoogle Scholar
  2. 2.
    Krid, M.: Commande en suivi de chemin et en roulis des robots mobiles rapides en presence de glissements et d’instabilités. Ph.D thesis, UPMC - University Pierre and Marie CURIE, Paris, 2012.Google Scholar
  3. 3.
    Fnadi, M., Menkouz, B., Plumet, F., Ben Amar, F.: Path Tracking Control for a Double Steering Off-Road Mobile Robot. In : ROMANSY 22-Robot Design, Dynamics and Control. Springer, Cham, pp. 441-449, 2019.Google Scholar
  4. 4.
    Fnadi, M., Plumet, F., Ben Amar, F.: Nonlinear Tire Cornering Stiffness Observer for a Double Steering Off-Road Mobile Robot. In : 2019 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2019.Google Scholar
  5. 5.
    Gillespie, T.D.: Fundamentals of vehicle dynamics. Society of Automotive Engineers, Warrendale, USA, 1992.CrossRefGoogle Scholar
  6. 6.
    Pacejka, H.: Tire and vehicle dynamics. Elsevier, 2005.Google Scholar
  7. 7.
    Grip, H.F., Imsland, L., Johansen, A., Kalkkuhl, J.C., Suissa, A.: Estimation of road inclination and bank angle in automotive vehicles. In: American Control Conference (ACC), pp. 426–432, 2009.Google Scholar
  8. 8.
    Sebsadji, Y., Glaser, S., Mammar, S., Netto, M.: Vehicle Roll and Road Bank Angles Estimation. In: International Federation of Automatic Control (IFAC) Proceedings Volumes, pp. 7091–7097, 2008.CrossRefGoogle Scholar
  9. 9.
    Sentouh, C., Sebsadji, Y., Mammar, S., Glaser, S.: Road bank angle and faults estimation using unknown input proportional-integral observer. In: European Control Conference (ECC), Greece, pp. 5131–5138, 2007.Google Scholar
  10. 10.
    Ryu, J., Gerdes, J.C.: Estimation of vehicle roll and road bank angle. In: Proceedings of the American Control Conference (ACC), pp. 2110–2115, vol.3, 2004.Google Scholar
  11. 11.
    Ryu, J., Gerdes, J.C.: Integrating Inertial Sensors with GPS for Vehicle Dynamics Control. In: Journal of Dynamic Systems, Measurement & Control, vol. 26, June 2004.Google Scholar
  12. 12.
    Kichun, J., Junsoo, K., Myoungho, S.: Real-Time Road-Slope Estimation Based on Integration of Onboard Sensors With GPS Using an IMMPDA Filter. In: IEEE Transactions on Intelligent Transportation Systems, pp. 1718–1732, 2013.Google Scholar
  13. 13.
    Richier, M., Lenain, R., Thuillot, B., Debain, C.: On-line estimation of a stability metric including grip conditions and slope: Application to rollover prevention for All-Terrain Vehicles. In: International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 2011.Google Scholar
  14. 14.
    Lenain, R., Thuillot, B.: Mobile robot control on uneven and slippery ground: An adaptive approach based on a multi-model observer. In: International Conference on Intelligent Robots and Systems (IROS), pp. 1141–1148, 2012.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohamed Fnadi
    • 1
    Email author
  • Frédéric Plumet
    • 1
  • Faïz Ben Amar
    • 1
  1. 1.Sorbonne University, CNRS UMR 7222, Institut des Systèmes Inteligents et de Robotique - ISIRParisFrance

Personalised recommendations