Advertisement

Variable Stiffness Mechanism for Robotic Rehabilitation

  • Carl A. NelsonEmail author
  • Laurence Nouaille
  • Gérard Poisson
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This paper presents a variable stiffness mechanism suitable for use in robotic rehabilitation. By inherently varying both the magnitude and direction of loading in the mechanism using a single input, a large variation in effective stiffness is achieved. Design and analysis of the variable stiffness mechanism are presented, along with an example illustrating performance capabilities.

Keywords

Variable Stiffness Robotic Rehabilitation Compliant Mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work described in this paper was supported in part by the University of Orléans.

References

  1. 1.
    Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N. (2016) Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev Biomed Eng. DOI:  https://doi.org/10.1109/RBME.2016.2552201.CrossRefGoogle Scholar
  2. 2.
    Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L.C., Wolf, S. (2013) Variable impedance actuators: A review. Robotics and Autonomous Systems,  https://doi.org/10.1016/j.robot.2013.06.009.CrossRefGoogle Scholar
  3. 3.
    Sugar, T. (2002) A novel selective compliant actuator. Mechatronics 12(9): 1157-1171.CrossRefGoogle Scholar
  4. 4.
    Tsagarakis, N., Laffranchi, M., Vanderborght, B., Caldwell, D. (2009) A Compact Soft Actuator Unit for Small Scale Human Friendly Robots, in: IEEE International Conference on Robotics and Automation (ICRA 2009) pp. 4356-4362.Google Scholar
  5. 5.
    Palli, G., Berselli, G., Melchiorri, C., Vassura, G. (2011) Design of a Variable Stiffness Actuator Based on Flexures. ASME Journal of Mechanisms and Robotics 3: 034501 (5 pp.)CrossRefGoogle Scholar
  6. 6.
    English, C., Russell, D. (1999) Implementation of variable joint stiffness through antagonistic actuation using rolamite springs, Mechanism and Machine Theory 34(1): 27–40.CrossRefGoogle Scholar
  7. 7.
    Boehler, Q. (2016) Analyse, conception et commande de mécanismes de tenségrité et systèmes précontraints, PhD thesis, Univ. de Strasbourg.Google Scholar
  8. 8.
    Zhou, X., Jun, S.-K., Krovi, V. (2015) A Cable Based Active Variable Stiffness Module With Decoupled Tension. ASME Journal of Mechanisms and Robotics 7: 011005 (5 pp.).CrossRefGoogle Scholar
  9. 9.
    Enoch. A., Vijayakumar, S. (2016) Rapid manufacture of novel variable impedance robots, ASME Journal of Mechanisms and Robotics 8: 011003 (11 pp.).CrossRefGoogle Scholar
  10. 10.
    Hollander, K., T. (2004) Sugar, Concepts for compliant actuation in wearable robotic systems, in: US-Korea Conference on Science, Technology and Entrepreneurship (UKC2004).Google Scholar
  11. 11.
    Kawamura, S., Yamamoto, T., Ishida, D., Ogata, T., Nakayama, Y., Tabata, O., Sugiyama, S. (2002) Development of passive elements with variable mechanical impedance for wearable robots, in: IEEE International Conference on Robotics and Automation (ICRA 2002) 1: 248-253.Google Scholar
  12. 12.
    Kani, M. H. H., Bonabi, H. A. Y., Bidgoly, H. J., Yazdanpanah, M. J., Ahmadabadi, M. N. (2016) Design and Implementation of a Distributed Variable Impedance Actuator Using Parallel Linear Springs, ASME Journal of Mechanisms and Robotics, 8: 021024 (12 pp.).CrossRefGoogle Scholar
  13. 13.
    Tsagarakis, N.I. Sardellitti, C.D.G. (2011) A new variable stiffness actuator (CompAct-VSA): Design and Modelling, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 25-30, 2011, San Francisco, CA, USA, pp. 378 – 383.Google Scholar
  14. 14.
    Jafari, A., Tsagarakis, N., Caldwell, D.G. (2011) AwAS-II: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio, in: IEEE International Conference on Robotics and Automation (ICRA): 4638–4643.Google Scholar
  15. 15.
    Groothuis, S. S., Rusticelli, G., Zucchelli, A., Stramigioli, S., Carloni, R. (2012) The vsaUT-II: a novel rotational variable stiffness actuator, in: IEEE International Conference on Robotics and Automation (ICRA 2012).Google Scholar
  16. 16.
    Fumagalli, M., Barrett, E., Stramigioli, S., Carloni, R. (2012) The mVSA-UT: a miniaturized differential mechanism for a continuous rotational variable stiffness actuator, in: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2012): 1943-1948.Google Scholar
  17. 17.
    Howell, L. L. (2001) Compliant Mechanisms, John Wiley & Sons.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carl A. Nelson
    • 1
    Email author
  • Laurence Nouaille
    • 2
  • Gérard Poisson
    • 2
  1. 1.University of Nebraska-LincolnLincolnUSA
  2. 2.PRISME LabUniversité d’Orléans INSA-CVLBourgesFrance

Personalised recommendations