Advertisement

Resolution of Functional Redundancy for 3T2R Robot Tasks using Two Sets of Reciprocal Euler Angles

  • Moritz SchapplerEmail author
  • Svenja Tappe
  • Tobias Ortmaier
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Robotic tasks like welding or drilling with three translational and only two rotational degrees of freedom (“3T2R”) are of high industrial relevance but are rather scarcely addressed in scientific publications. Existing solutions for the resolution of the functional redundancy of robotic manipulators with more than five axes performing these tasks either expand the full kinematic formulation or reduce it in intermediate steps. This paper presents an approach to reduce the kinematic formulation from the start to solve the problem in a simpler way. This is done by using a set of reciprocal Euler angles to describe the end-effector orientation and the orientation error in inverse kinematics.

Keywords

functional redundancy reciprocal Euler angles inverse kinematics robot manipulators five-DoF task 3T2R task 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldenberg, A., Benhabib, B., Fenton, R.: A complete generalized solution to the inverse kinematics of robots. IEEE Journal on Robotics and Automation 1(1), 14–20 (1985).  https://doi.org/10.1109/jra.1985.1086995CrossRefGoogle Scholar
  2. 2.
    Yoshikawa, T.: Analysis and control of robot manipulators with redundancy. In: Robotics research: the first international symposium, pp. 735–747. MIT press Cambridge, MA (1984)Google Scholar
  3. 3.
    Huo, L., Baron, L.: Kinematic inversion of functionally-redundant serial manipulators: application to arc-welding. Transactions of the Canadian Society for Mechanical Engineering 29(4), 679–690 (2005).  https://doi.org/10.1139/tcsme-2005-0045CrossRefGoogle Scholar
  4. 4.
    Zhu, W., Qu, W., Cao, L., Yang, D., Ke, Y.: An off-line programming system for robotic drilling in aerospace manufacturing. The International Journal of Advanced Manufacturing Technology 68(9-12), 2535–2545 (2013).  https://doi.org/10.1007/s00170-013-4873-5CrossRefGoogle Scholar
  5. 5.
    Guo, Y., Dong, H., Ke, Y.: Stiffness-oriented posture optimization in robotic machining applications. Robotics and Computer-Integrated Manufacturing (RCIM) 27(2), 367–376 (2015).  https://doi.org/10.1016/j.rcim.2015.02.006CrossRefGoogle Scholar
  6. 6.
    From, P.J., Gravdahl, J.T.: A real-time algorithm for determining the optimal paint gun orientation in spray paint applications. IEEE Transactions on Automation Science and Engineering 7(4), 803–816 (2010).  https://doi.org/10.1109/tase.2009.2033567CrossRefGoogle Scholar
  7. 7.
    Mousavi, S., Gagnol, V., Bouzgarrou, B.C., Ray, P.: Stability optimization in robotic milling through the control of functional redundancies. RCIM 50, 181–192 (2018).  https://doi.org/10.1016/j.rcim.2017.09.004CrossRefGoogle Scholar
  8. 8.
    Baron, L.: A joint-limits avoidance strategy for arc-welding robots. In: Int. Conf. on Integrated Design and Manufacturing in Mech. Eng, pp. 16–19 (2000)Google Scholar
  9. 9.
    Žlajpah, L.: On orientation control of functional redundant robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2475–2482 (2017).  https://doi.org/10.1109/icra.2017.7989288
  10. 10.
    Léger, J., Angeles, J.: Off-line programming of six-axis robots for optimum five-dimensional tasks. Mechanism and Machine Theory 100, 155–169 (2016).  https://doi.org/10.1016/j.mechmachtheory.2016.01.015CrossRefGoogle Scholar
  11. 11.
    Huo, L., Baron, L.: The joint-limits and singularity avoidance in robotic welding. Industrial Robot: An International Journal 35(5), 456–464 (2008).  https://doi.org/10.1108/01439910810893626CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Moritz Schappler
    • 1
    Email author
  • Svenja Tappe
    • 1
  • Tobias Ortmaier
    • 1
  1. 1.Institute for Mechatronic Systems, Leibniz University HannoverHannoverGermany

Personalised recommendations