Advertisement

Design of a Motion Energy Harvester based on Compliant Mechanisms: a Bi-stable Frequency Up-converter Generator

  • T. W. A. BladEmail author
  • D. Farhadi Machekposhti
  • J. L. Herder
  • N. Tolou
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

This work presents a novel design, model and prototype of a motion energy harvester based on bi-stability and frequency up-conversion. The Parametric Frequency up-converter Generator (PFupCG). The PFupCG was designed to harvest energy under conditions where the amplitude of the driving motion is larger than the internal displacement limit. Instead of an impact member, the PFupCG uses a compliant suspension mechanism that combines a bi-stable characteristic with a strong stiffening behavior as a result of geometric effects. This resulted in a prototype of the PFupCG with an internal-to-applied motion amplitude ratio of 0.2. A case study was carried out where the PFupCG was analyzed by simulation and experiment for vibration conditions representative of human walking motion (2Hz, 25 mm).

Keywords

Motion energy harvesting Frequency up-conversion Bi-stability Compliant mechanisms Nonlinear dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CB Williams and Rob B Yates. Analysis of a micro-electric generator for microsystems. Sensors and Actuators A: Physical, 52(1):8–11, 1996.CrossRefGoogle Scholar
  2. 2.
    Paul D Mitcheson, Tim C Green, Eric M Yeatman, and Andrew S Holmes. Architectures for vibration-driven micropower generators. Journal of microelectromechanical systems, 13(3):429–440, 2004.CrossRefGoogle Scholar
  3. 3.
    Paul D Mitcheson, Eric M Yeatman, G Kondala Rao, Andrew S Holmes, and Tim C Green. Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9):1457–1486, 2008.CrossRefGoogle Scholar
  4. 4.
    Thomas Von Buren, Paul D Mitcheson, Tim C Green, Eric M Yeatman, Andrew S Holmes, and Gerhard Troster. Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal, 6(1):28–38, 2006.CrossRefGoogle Scholar
  5. 5.
    Matthias Geisler, Sebastien Boisseau, Matthias PEREZ, Pierre Gasnier, Jerome Willemin, Imene Ait-Ali, and Simon Perraud. Human-motion energy harvester for autonomous body area sensors. Smart Materials and Structures, 2016.Google Scholar
  6. 6.
    DF Berdy, DJ Valentino, and D Peroulis. Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester. Sensors and Actuators A: Physical, 222:262–271, 2015.CrossRefGoogle Scholar
  7. 7.
    A Haroun, I Yamada, and S Warisawa. Investigation of kinetic energy harvesting from human body motion activities using free/impact based micro electromagnetic generator. Diabetes Cholest Metabol, 1(104):13–16, 2016.Google Scholar
  8. 8.
    Pit Pillatsch, Eric M Yeatman, and Andrew S Holmes. A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sensors and Actuators A: Physical, 206:178–185, 2014.CrossRefGoogle Scholar
  9. 9.
    Miah Abdul Halim and Jae Yeong Park. Piezoelectric energy harvester using impact-driven flexible side-walls for human-limb motion. Microsystem Technologies, pages 1–9, 2017.Google Scholar
  10. 10.
    Sergio P Pellegrini, Nima Tolou, Mark Schenk, and Just L Herder. Bistable vibration energy harvesters: a review. Journal of Intelligent Material Systems and Structures, page 1045389X12444940, 2012.Google Scholar
  11. 11.
    TWA Blad, D Farhadi Machekposhti, JL Herdser, AS Holmes, and N Tolou. Vibration energy harvesting from multi-directional motion sources. In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages 1–9. IEEE, 2018.Google Scholar
  12. 12.
    Yaowen Yang and Lihua Tang. Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures, 20(18):2223–2235, 2009.CrossRefGoogle Scholar
  13. 13.
    Waleed Al-Ashtari, Matthias Hunstig, Tobias Hemsel, and Walter Sextro. Analytical determination of characteristic frequencies and equivalent circuit parameters of a piezoelectric bimorph. Journal of Intelligent Material Systems and Structures, 23(1):15–23, 2012.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • T. W. A. Blad
    • 1
    Email author
  • D. Farhadi Machekposhti
    • 1
  • J. L. Herder
    • 1
  • N. Tolou
    • 1
  1. 1.Department of Precision and Microsystems EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations