Advertisement

An Exoskeleton Design Robotic Assisted Rehabilitation: Wrist & Forearm

  • M. Erkan KütükEmail author
  • M. Taylan Daş
  • L. Canan Dülger
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Robotic systems are being used in physiotherapy for medical purposes. Providing physical training (therapy) is one of the main applications of fields of rehabilitation robotics. Upper-extremity rehabilitation involves shoulder, elbow, wrist and fingers’ actions that stimulate patients’ independence and quality of life. An exoskeleton for human wrist and forearm rehabilitation is designed and manufactured. It has three degrees of freedom which must be fitted to real human wrist and forearm. Anatomical motion range of human limbs is taken into account during design. A six DOF Denso robot is adapted. An exoskeleton driven by a serial robot has not been come across in the literature. It is feasible to apply torques to specific joints of the wrist by this way. Studies are still continuing in the subject.

Keywords

Robotic Rehabilitation Wrist&Forearm Exoskeleton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krebs, H., Hogan, N., Aisen, M., Volpe, B.: Robot-aided neurorehabilitation, IEEE Transactions on Rehabilitation Engineering 6(1), 75–87 (1998).CrossRefGoogle Scholar
  2. 2.
    Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., Van Der Loos, M.: Robot-ass. movement training compared with conventional therapy techniques for the rehab. of upper limb motor function after stroke. Arc. of Phy. Med. and Rehab. 83(7), 952–959 (2002).Google Scholar
  3. 3.
    Gupta, A., O’Malley, M. K.: Design of a haptic arm exoskeleton for training and rehabilitation’’, IEEE/ASME Trans. on Mechatronics 11(3), 280–289 (2006).CrossRefGoogle Scholar
  4. 4.
    Nef, T., Mihelj, M., Kiefer, G., Perndl, C., Muller, R., Riener R.:Armin-Exoskeleton for arm therapy in stroke patients’’, In: 10th Int Conf. on Rehab Robotics, pp: 68–74 (2008).Google Scholar
  5. 5.
    Perry, J. C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics 12(4), 408–417 (2007).CrossRefGoogle Scholar
  6. 7.
    Otten, A., Voort, C., Stienen, A., Aarts, R., Van Asseldonk, E., Van der Kooij, H.: LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton, IEEE/ASME Trans. on Mechatronics 20 (5), 2285–2298 (2015).CrossRefGoogle Scholar
  7. 8.
    Lum ,P. S., Burgar, C. G., Van Der Loos, M., Shor, P. C., Majmundar ,M., Yap, R..:The MIME robotic system for upper-limb neuro-rehabilitation: results from a clinical trial in subacute stroke, In: IEEE 9th Int. Conf.on Rehabilitation Robotics, pp: 511–514. (2005).Google Scholar
  8. 9.
    Khor, K. X., Chin, P. J. H., Hisyam ,A. R., Yeong, C. F., Narayanan A. L. T., Su,E. L. M.: development of cr2-haptic: a compact and portable rehabilitation robot for wrist and forearm training, In: IEEE Conf. on Biomedical Eng. and Sciences, pp: 424–429 (2014).Google Scholar
  9. 10.
    Oblak, J., Cikajlo, I., Matjacic, Z.:Universal haptic drive: a robot for arm and wrist rehabilitation. IEEE Tr. on Neural Sys. and Rehab. Eng.18(3), 293–302 (2010).CrossRefGoogle Scholar
  10. 11.
    Lum, S., Reinkensmeyer, D., Lehman, S.: Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Trans. on Rehab. Eng. 1(3), 185–191, (1993).CrossRefGoogle Scholar
  11. 12.
    Allington, J., Spencer, S. J., Klein, J., Buell, M., Reinkensmeyer, D. J., Bobrow, J.:Supinator Extender (sue): A pneumatically actuated robot for forearm/wrist rehabilitation after stroke. In: EMBC, 2011, pp:1579–1582 (2011).Google Scholar
  12. 13.
    Gupta, A., O’Malley, M. K., Patoglu, V., Burgar, C., :Design, control and performance of ricewrist: a force feedback wrist exoskeleton for rehabilitation and training, The Int. J. of Robotics Research 27 (2), 233–251 (2008).Google Scholar
  13. 14.
    Spencer, S. J., Klein, J., Minakata, K., Le, V., Bobrow, J. E., Reinkensmeyer, D. J.,: A low cost parallel robot and trajectory optimization method for wrist and forearm rehabilitation. In:(BioRob 2008), pp: 869–874 (2008).Google Scholar
  14. 15.
    Pehlivan, A., Lee, S., O’Malley, M.: Mechanical design of Ricewrist-s: a WF exoskeleton for stroke and spinal cord injury rehabilitation. In: BIOROB, pp: 1573–1578, (2012).Google Scholar
  15. 16.
    Martinez, J. F., Ng, P., Lu, S., Campagna, M., Celik, O.: Design of wrist gimbal: a forearm and wrist exoskeleton for stroke rehabilitation. In: ICORR, pp: 1–6 (2013).Google Scholar
  16. 17.
    Beekhuis, J. H., Westerveld, A. J., Van der Kooij, H., Stienen, A. H. A.: Design of a self-aligning 3-dof actuated exoskeleton for diagnosis and training of wrist and forearm after stroke, IEEE Int. Conf. on Rehabilitation Robotics, (2013).Google Scholar
  17. 18.
    Omarkulov, N., Telegenov, K., Zeinnullin, M., Tursynbek, I.: Preliminary mechanical design of nu-wrist: a 3 dof self-aligning wrist rehabilitation robot. In: BIOROB, 2016.Google Scholar
  18. 19.
    Dağdelen, M., Sarıgeçili M. İ.: Development of a conceptual model for w/f rehabilitation robot with two degrees of freedom, Advances in Robot Design and Int. Control (2017).Google Scholar
  19. 20.
    Kütük, M. E., Daş M. T., Dülger, L. C.: Forward and inverse kinematic analysis of denso robot. In: AzCIFToMM (2017).Google Scholar
  20. 21.
  21. 22.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Erkan Kütük
    • 1
    Email author
  • M. Taylan Daş
    • 2
    • 3
  • L. Canan Dülger
    • 4
  1. 1.Gaziantep UniversityGaziantepTurkey
  2. 2.University of WaterlooWaterlooCanada
  3. 3.Kırıkkale UniversityKırıkkaleTurkey
  4. 4.Izmir University of EconomicsİzmirTurkey

Personalised recommendations