Advertisement

Optimization-Based Approach to the Embodiment Design of Compliant Mechanisms with Different Flexure Hinges

  • Felix HarfenstellerEmail author
  • Sebastian Linß
  • Philipp Gräser
  • Christian Weber
  • Lena Zentner
  • René Theska
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

In various applications compliant mechanisms allow a reduction of mass, assembly and manufacturing effort through the integration of functions into fewer parts and an increasing precision through less wear and backlash. Due to the variety of geometric parameters and the complex relation between loads, deformation and strain, the dimensioning of flexure hinges is still a challenging task. This paper presents a new optimization-based approach to the embodiment design of an exemplary chosen compliant gripper mechanism with different corner-filleted flexure hinges. Based on a rigid-body model, loads and rotation angles for the dimensioning of each hinge are deduced. A linear finite-beam model is used to analyze the corresponding strain. Through the application of the box-complex method, chosen dimensions of the flexure hinges are optimized, resulting in a suitable embodiment design with an admissible maximum strain and a minimized installation space. The optimization results are successfully evaluated with regard to their distribution over multiple repetitions and the accuracy compared to a three-dimensional FEM model.

Keywords

compliant mechanism flexure hinge embodiment design dimensioning optimization gripper mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Howell, L.L., Magleby, S.P., Olsen, B.M.: Handbook of Compliant Mechanisms. John Wiley & Sons (2013)Google Scholar
  2. 2.
    Friedrich, R.: Modellierung und Optimierung nachgiebiger Mechanismen auf Basis elastischer Festkörpergelenke mit Hilfe von nichtlinearen Finiten Balkenelementen. Ph.D. thesis, Helmut-Schmidt-Universität, Hamburg (2016)Google Scholar
  3. 3.
    Zentner, L.: Nachgiebige Mechanismen, De Gruyter Oldenbourg, München (2014)Google Scholar
  4. 4.
    Yong, Y.K., Lu, T.-F., Handley, D.C.: Review of circular flexure hinge design equations and derivation of empirical formulations. Precis. Eng., 32(2):63-70 (2008).  https://doi.org/10.1016/j.precisioneng.2007.05.002CrossRefGoogle Scholar
  5. 5.
    Linß, S., Schorr, P., Zentner, L.: General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges. Mech. Sci., 8:29-49 (2017).  https://doi.org/10.5194/ms-8-29-2017CrossRefGoogle Scholar
  6. 6.
    Kerle, H., Corves, B., Hüsing, M.: Getriebetechnik: Grundlagen, Entwicklung und Anwendung ungleichmäßig übersetzender Getriebe. Springer-Verlag (2015)Google Scholar
  7. 7.
    Brix, T., Döring, U., Corves, B., Modler, K. H.: DMG-Lib: the Digital Mechanism and Gear Library-Project. In Proceedings of the 12th World Congress in Mechanism and Machine Science, IFToMM, 18-21 (2007)Google Scholar
  8. 8.
    Jin, M., Zhang, X., Zhu, B.: Design of compliant mechanisms using a pseudo-rigid-body model based topology optimization method. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers (2014)Google Scholar
  9. 9.
    Schorr, P., Linß, S., Zentner, L., Zimmermann, K.: Influence of the orientation of flexure hinges on the elastokinematic properties. In: Vierte IFToMM D-A-CH Konferenz 2018, Lausanne, Switzerland (2018).  https://doi.org/10.17185/duepublico/45330
  10. 10.
    Hao, G., Yu, J., Liu, Y.: Compliance Synthesis of a Class of Planar Compliant Parallelogram Mechanisms Using the Position Space Concept. In: 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), 1-10 (2018).  https://doi.org/10.1109/remar.2018.8449882
  11. 11.
    Öchsner, A., Merkel, M.: One-Dimensional Finite Elements. Springer-Verlag, Berlin (2013)CrossRefGoogle Scholar
  12. 12.
    Linß, S.: Ein Beitrag zur geometrischen Gestaltung und Optimierung prismatischer Festkörpergelenke in nachgiebigen Koppelmechanismen. Ph.D. thesis, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau (2015)Google Scholar
  13. 13.
    Box, M. J.: A new method of constrained optimization and a comparison with other methods. Comput. J., 8(1), 42-52 (1965).  https://doi.org/10.1093/comjnl/8.1.42MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guin, J. A.: Modification of the complex method of constrained optimization. Comput. J., 10(4), 416-417 (1968).  https://doi.org/10.1093/comjnl/10.4.416CrossRefGoogle Scholar
  15. 15.
    Cortés-Pérez, A. R., Herrera-May, A. L., Aguilera-Cortés, L. A., González-Palacios, M. A., Torres-Cisneros, M.: Performance optimization and mechanical modeling of uniaxial piezoresistive microaccelerometers. Microsyst. Technol., 16(3), 461-476 (2010).  https://doi.org/10.1007/s00542-009-0942-yCrossRefGoogle Scholar
  16. 16.
    Rao, S. S.: Engineering optimization: theory and practice. John Wiley & Sons (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Felix Harfensteller
    • 1
    Email author
  • Sebastian Linß
    • 2
  • Philipp Gräser
    • 3
  • Christian Weber
    • 1
  • Lena Zentner
    • 2
  • René Theska
    • 3
  1. 1.Department of Mechanical Engineering, Engineering Design GroupTechnische Universität IlmenauIlmenauGermany
  2. 2.Department of Mechanical Engineering, Compliant Systems GroupTechnische Universität IlmenauIlmenauGermany
  3. 3.Department of Mechanical Engineering, Precision Engineering GroupTechnische Universität IlmenauIlmenauGermany

Personalised recommendations