Synthesis Method for Compliant Mechanisms of High-Precision and Large-Stroke by Use of Individually Shaped Power Function Flexure Hinges

  • Sebastian LinßEmail author
  • Philipp Gräser
  • Stefan Henning
  • Felix Harfensteller
  • René Theska
  • Lena Zentner
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


Flexure hinge-based compliant mechanisms have many advantages compared to their counterparts with conventional joints. Hence, they are state of the art in numerous precision engineering applications, especially due to their smooth and repeatable motion. The common usage of identical simple notch shapes for all hinges in one mechanism is considerably limiting the stroke. The further design and synthesis are iterative, non-intuitive and often time-consum-ing. Application-specific optimization approaches cannot be generalized. There-fore, a novel and simple synthesis method for compliant mechanisms consisting of easy to model and highly variable power function-shaped flexure hinges is described in this paper. The main approach is to design each hinge individually in dependence of the known rigid-body-based relative rotation angles during mo-tion. A slider-crank path-generating mechanism is used as an example to show the benefits of the synthesis method regarding a high precision as well as a large stroke compared to identically shaped hinges. The method is confirmed by results due to analytical modeling, FEM simulation and experimental investigation.


Compliant Mechanism Synthesis Individually Shaped Flexure Hinge Power Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the support of the DFG (ZE 714/10-2 and TH 845/5-2).


  1. 1.
    Howell, L.L., Magleby, S.P., Olsen, B.M.: Handbook of Compliant Mechanisms. Wiley, Chichester (2013).Google Scholar
  2. 2.
    Xu, Q.: Design and Implementation of Large-Range Compliant Micropositioning Systems. Wiley, Sin-gapore (2016).CrossRefGoogle Scholar
  3. 3.
    Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca Raton, Fla. (2003).CrossRefGoogle Scholar
  4. 4.
    Pavlovic, N.T., Pavlovic, N.D.: Compliant mechanism design for realizing of axial link translation. Mech. Mach. Theory 44(5), 1082–1091 (2009). doi: 10.1016/j.mechmachtheory.2008.05.005.CrossRefGoogle Scholar
  5. 5.
    Henein, S., Spanoudakis, P., Droz, S., Myklebust, L.I., Onillon, E.: Flexure pivot for aerospace mecha-nisms. In: 10th European Space Mechanisms and Tribology Symposium. San Sebastian, Spain (2003).Google Scholar
  6. 6.
    Cosandier, F., Eichenberger, A., Baumann, H., Jeckelmann, B., Bonny, M., Chatagny, V., Clavel, R.: Development and integration of high straightness flexure guiding mechanisms dedicated to the METAS watt balance Mark II. Metrologia 51(2), 88–95 (2014). doi: 10.1088/0026-1394/51/2/S88.CrossRefGoogle Scholar
  7. 7.
    Lin, C.-F., Shih, C.-J.: Multiobjective design optimization of flexure hinges for enhancing the perfor-mance of micro-compliant mechanisms. Journal of the Chinese Institute of Engineers 28(6), 999–10003 (2005). doi: 10.1080/02533839.2005.9671075.CrossRefGoogle Scholar
  8. 8.
    Linß, S., Erbe, T., Zentner, L.: On polynomial flexure hinges for increased deflection and an approach for simplified manufacturing. In: 13th World Congress in Mechanism and Machine Science, A11_512. Guanajuato, Mexico (2011).Google Scholar
  9. 9.
    Linß, S., Schorr, P., Zentner, L.: General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges. Mech. Sci. 8(1), 29–49 (2017). doi: 10.5194/ms-8-29-2017.CrossRefGoogle Scholar
  10. 10.
    Zhu, B.L., Zhang, X.M., Fatikow, S.: Design of single-axis flexure hinges using continuum topology optimization method. Sci. China / E 57(3), 560–567 (2014). doi: 10.1007/s11431-013-5446-4.CrossRefGoogle Scholar
  11. 11.
    Gräser, P., Linß, S., Zentner, L., Theska, R.: Optimization of Compliant Mechanisms by Use of Different Polynomial Flexure Hinge Contours. In: 3rd IAK, Interdisciplinary Applications of Kinematics. Lima, Peru (2018).Google Scholar
  12. 12.
    Linß, S., Milojevic, A., Pavlovic, N.D., Zentner, L.: Synthesis of Compliant Mechanisms based on Goal-Oriented Design Guidelines for Prismatic Flexure Hinges with Polynomial Contours. In: 14th World Congress in Mechanism and Machine Science. Taipei, Taiwan, (2015).Google Scholar
  13. 13.
    Beroz, J., Awtar, S., Bedewy, M., Tawfick S., Hart A. J.: Compliant microgripper with parallel straight-line jaw trajectory for nanostructure manipulation. In: 26th Annual Meeting of the American Society for Precision Engineering. Denver, USA (2011).Google Scholar
  14. 14.
    Clark, L., Shirinzadeh, B., Zhong, Y., Tian, Y., Zhang, D.: Design and analysis of a compact flexure-based precision pure rotation stage without actuator redundancy. Mech. Mach. Theory 105, 129–144 (2016). doi: 10.1016/j.mechmachtheory.2016.06.017.CrossRefGoogle Scholar
  15. 15.
    Linß, S.: Ein Beitrag zur geometrischen Gestaltung und Optimierung prismatischer Festkörpergelenke in nachgiebigen Koppelmechanismen. PhD Thesis, TU Ilmenau, Ilmenau (2015).Google Scholar
  16. 16.
    Tanik, E., Parlaktas, V.: A new type of compliant spatial four-bar (RSSR) mechanism. Mech. Mach. Theory 46(5), 593–607 (2011). doi: 10.1016/j.mechmachtheory.2011.01.004.CrossRefGoogle Scholar
  17. 17.
    Bharanidaran, R., Ramesh T.: A numerical approach to design a compliant based Microgripper with in-tegrated force sensing jaw. Int. J. Mech. 7(2), 128–135 (2013).Google Scholar
  18. 18.
    Meng, Q.: A Design Method for Flexure-Based Compliant Mechanisms on the Basis of Stiffness and Stress Characteristics, PhD Thesis, Università di Bologna, Bologna (2012).Google Scholar
  19. 19.
    Linß, S., Schorr, P., Henning, S., Zentner, L.: Contour-independent design equations for the calculation of the rotational properties of commonly used and polynomial flexure hinges. In: 59th International Sci-entific Colloquium. Ilmenau, Germany (2017).Google Scholar
  20. 20.
    Henning, S., Linß, S., Zentner, L.: detasFLEX – A computational design tool for the analysis of various notch flexure hinges based on non-linear modeling. Mech. Sci. 9(2), 389–404 (2018). doi: 10.5194/ms-9-389-2018.CrossRefGoogle Scholar
  21. 21.
    Pavlovic, N.T., Pavlovic, N.D., Milosevic, M.: Design of compliant slider-crank mechanism. In: 56th International Scientific Colloquium. Ilmenau, Germany (2011).Google Scholar
  22. 22.
    Zentner, L.: Nachgiebige Mechanismen. De Gruyter Oldenbourg, München (2014).Google Scholar
  23. 23.
    Henning, S., Linß, S., Zentner, L.: Numerical Calculation of Compliant Four-bar Mechanisms with Flex-ure Hinges. In: 4th International Conference Mechanical Engineering in XXI Century, pp. 267–270. Niš, Serbia (2018).Google Scholar
  24. 24.
    Gräser, P.; Linß, S.; Zentner, L.; Theska, R.: Ultra-precise linear motion generated by means of compliant mechanisms. In: 15th euspen International conference, pp. 241–242. Leuven, Belgium (2015).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Compliant Systems GroupTechnische Universität IlmenauIlmenauGermany
  2. 2.Precision Engineering GroupTechnische Universität IlmenauIlmenauGermany
  3. 3.Engineering Design GroupTechnische Universität IlmenauIlmenauGermany

Personalised recommendations