A new Approach to Determine the Main Dimensions of Complex Cam Mechanisms

  • Mario MüllerEmail author
  • Maximilian Hoffmann
  • Mathias Hüsing
  • Burkhard Corves
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)


The synthesis process of cam mechanisms consists of three basic tasks. Besides the definition of the output motion and the calculation of the cam curvature, one of these tasks is the determination of the main dimensions. Among others, the hodograph method is an often-applied method to determine those main dimensions. In special, this method detects the appropriate locations of the cam disk’s revolute joint in order to fulfill a predefined minimal transmission angle. For complex cam mechanisms consisting of more than three links, no such method is defined yet. Therefore, this paper describes a new approach for the determination of these main dimensions. This approach is based on the graphical superposition. The relative velocities of the cam follower will be separated into two parts – one part according to the motion of the cam and another part according to the motion of a guidance link. By this superposition, the area of suitable positions of the cam disk’s revolute joint can be determined analytically. This determination ensures – like the common hodograph method – that the transmission angle will not fall below a predefined minimal value. After the description of the new approach, it is validated on a complex guidance mechanism with two rotary cam disks.


Cam Mechanism Hodograph Method Transmission Angle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ottaviano, E.; Mundo, D.; Danieli, G. A.; Ceccarelli, M., Numerical and experimental analysis of non-circular gears and cam-follower systems as function generators. In: Mechanism and Machine Theory, 43 (2008) 8, pp. 996–1008.CrossRefGoogle Scholar
  2. [2]
    Bickford, J. H., Mechanisms for intermittent motion, New York: Industrial Press, 1972, ISBN 9780831110918.Google Scholar
  3. [3]
    Chen, H.; Nguyen, T. T. N.; Müller, M.; Kurtenbach, S.; Pan, C.; Hüsing, M.; Corves, B., Application of a Cam Workbench for Education in Mechanical Engineering, In: Corves, B. et al. (Eds.), New Advances in Mechanisms, Mechanical Transmissions and Robotics, Cham: Springer International Publish-ing; Imprint; Springer, 2017, ISBN 978-3-319-45449-8, pp. 177–186.Google Scholar
  4. [4]
    Kerle, H.; Corves, B. J.; Hüsing, M., Getriebetechnik, Grundlagen, Entwick-lung und Anwendung ungleichmäßig übersetzender Getriebe,: Springer Vieweg, 5th ed., 2015, ISBN 978-3-658-10056-8 (e-book: 978-3-658-10057-5).CrossRefGoogle Scholar
  5. [5]
    Volmer, J., Getriebetechnik, Kurvengetriebe, Berlin: VEB Verlag Technik, 2., stark bearb. Aufl., 1989, ISBN 9783341004746.Google Scholar
  6. [6]
    VDI 2741, Kurvengetriebe für Punkt- und Ebenenführung, Verein Deutscher Ingenieure, Berlin: Beuth Verlag GmbH, 2004.Google Scholar
  7. [7]
    VDI 2142 Blatt 1, Construction of planar cam mechanisms, Verein Deutscher Ingenieure, Berlin: Beuth Verlag GmbH, 2017.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mario Müller
    • 1
    Email author
  • Maximilian Hoffmann
    • 2
  • Mathias Hüsing
    • 1
  • Burkhard Corves
    • 1
  1. 1.Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Electrochemical Process Engineering (IEK-3), Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations