Advertisement

On the History of the Discovery of the Subgroups of the Euclidean Group

  • José M. RicoEmail author
  • J. Jesús Cervantes-Sánchez
  • Emilia Olivares-Conraud
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

In the kinematics literature and community it is commonly accepted that the first complete list of the subgroups of the Euclidean group is due to Hervé, who in 1978, published a seminal paper on the applications of group theory to the mobility of kinematic chains. This contribution shows that, in the mathematical and physics communities, the determination of the subgroups of the Euclidean group is dated a century before, 1868, and it is the result of another French engineer and mathematician Camille Jordan. The only remaining issues, with Jordan’s contribution are that He also included a, latter proven, incomplete list of the finite subgroups of the Euclidean group and that the group concept as a mathematical structure was not completely agreed until 1900.

Keywords

group theory subgroups kinematics mathematical history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the Universidad de Guanajuato for its support. In addition, the first two authors thank, SNI, the Mexican National Systems of Researchers and CONACYT, National Council of Science and Technology for their support through fellowships and scholarships in the last few years.

References

  1. 1.
    Bottema, O., Roth, B.: Theoretical Kinematics, North-Holland, Amsterdam (1979)Google Scholar
  2. 2.
    Hervé, J. M.: Analyse Structurelle des Mecanismes par Groupe des Deplacements. Mechanisms and Machine Theory. 13, 437-450 (1978). doi.org/10.1016/0094-114X(78)90017-4Google Scholar
  3. 3.
    Angeles, J.: Spatial Chains: Analysis-Synthesis-Optimization, Springer, Berlin (1979)Google Scholar
  4. 4.
    Huang, Z., Li, Q., Ding, H.: Theory of Parallel Mechanisms, Springer, Dordrect (2013)Google Scholar
  5. 5.
    Hervé, J. M.:The Theory of Groups and the Theory of Mechanisms. In Leinonen, T. (ed.), Proc. of Tenth World Congress of the TMM, Oulu, Finland, June 20-24, (1999).Google Scholar
  6. 6.
    Jordan, C.: Traité des Substitutionts et des Èquations Algébriques, Gauthier-Villars, Paris (1870).Google Scholar
  7. 7.
    Van der Waerden, B. L.: A History of Algebra: From al-Khwarizmi to Emmy Noether, Springer-Verlag, Berlin (1985).Google Scholar
  8. 8.
    Jordan, C.: Sur les groupes de mouvements. C. r. hebd. Seanc. Acad. Sci., Paris. 65, 229-232 (1867).Google Scholar
  9. 9.
    Klein, F.:A Comparative Review of Recent Researches in Geometry, Bulletin of the American Mathematical Society, 2, 215-249 (1893). doi.10.1090/s0002-9904-1893-00147-xGoogle Scholar
  10. 10.
    Jordan, C.: Mémoire sur les groupes de mouvements. Annali di Matematica Pura ed Applicata. 2, 167-215 (1868). doi.org/10.1007/BF02419610CrossRefGoogle Scholar
  11. 11.
    Jordan, C.: Mémoire sur les groupes de mouvements. Annali di Matematica Pura ed Applicata. 2, 322-345 (1868). doi.org/10.1007/BF02419622CrossRefGoogle Scholar
  12. 12.
    Brechenmacher F.: The 27 Italies of Camille Jordan. In: Brechenmacher F., Jouve G., Mazliak L., Tazzioli R. (eds) Images of Italian Mathematics in France. Trends in the History of Science. Birkhuser, Cham (2016). doi.org/10.1007/978-3-319-40082-2_4Google Scholar
  13. 13.
    Koster, G. F.: Space Groups and Their Representations. In Seitz, F., Turnbull, D. (eds) Solid State Physics Vol. 5, 173-256 (1957). doi.org/10.1016/S0081-1947(08)60103-4Google Scholar
  14. 14.
    Burckhardt, J. J.: Zur Geschichte der Entdeckung der 230 Raumgruppen. Archive for History of Exact Sciences, 4, 235-246 (1967). doi.org/10.1007/BF00412962MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cayley, A.: VII. On the theory of groups, as depending on the symbolic equation θn = 1. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7, 40-47 (1854). doi:10.1080/14786445408647421CrossRefGoogle Scholar
  16. 16.
    Cayley, A.: A Theorem on Groups. Mathematische Annalen, 13, 561-565, (1878). doi:10.1007/bf01444354MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cayley, A.: On the Theory of Groups. Proceedings of the London Mathematical Society, s1-9, 126-133, (1878). doi:10.1112/plms/s1-9.1.126CrossRefGoogle Scholar
  18. 18.
    Cayley, A.: Desiderata and Suggestions: No. 1. The Theory of Groups: Graphical Representation. American Journal of Mathematics, 1, 50-52, (1878). doi:10.2307/2369433MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cayley, A.: Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation. American Journal of Mathematics, 1, 174-176, (1878). doi:10.2307/2369306MathSciNetCrossRefGoogle Scholar
  20. 20.
    Weber, H.: Die allgemeinen Grundlagen der Galois’schen Gleichungstheorie. Mathematische Annalen, 43, 521-549 (1893). doi.org/10.1007/978-3-642-90799-9 3MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kleiner, I.: The Evolution of Group Theory: A Brief Survey. Mathematics Magazine, 59, 195-215 (1986). doi.org/10.2307/2690312MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wussing, H.: The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory, Dover Publications, Mineola, N. Y. (2007)Google Scholar
  23. 23.
    Fraleigh, J. B.: A First Course in Abstract Algebra, Pearson Education Limited, Harlow. (2014)Google Scholar
  24. 24.
    Jordan, C.: Commentaire sur Galois, Mathematische Annalen, 1, 141-160, (1869). doi:10.1007/bf01459183MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José M. Rico
    • 1
    Email author
  • J. Jesús Cervantes-Sánchez
    • 1
  • Emilia Olivares-Conraud
    • 1
  1. 1.Departamento de Ingeniería Mecánica, División de Ingenierías, CISUniversidad de GuanajuatoSalamancaMexico

Personalised recommendations