Advertisement

Theoretical Joint Load Analysis of a Novel Prosthetic Digit Design

  • Shao Liu
  • Matthew Van
  • Zijue Chen
  • Chao Chen
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 73)

Abstract

Hand loss can cause a significant reduction in functionality and psychological trouble, which can be partially recovered by hand pros theses. For 3D printed prosthetic digits, internal joint loads are critical due to the low strength of 3D printed components. This paper introduces a novel five-link epicyclic (FLE) digit for 3D printed hand prostheses. The motion and joint loads of the FLE digit are analysed and compared to the commonly-adopted coupled-four-bar (CFB) digits. The results show that the FLE digit yields reduced internal joint loads and required stiffness by up to 80%, and mimics the proportions and anthropomorphic motion of a human digit. Hence, the FLE digit may be more suitable for 3D printed hand prostheses.

Keywords

prosthetic hand constraint analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Massa, B., Roccella, S., Carrozza, M.C., Dario, P.: Design and development of an underactuated prosthetic hand. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol. 4, pp. 3374–3379 (2002)Google Scholar
  2. 2.
    ten Kate, J., Smit, G., Breedveld, P: 3d- printed upper limb prostheses: a review. Disability and Rehabilitation: Assistive Technology, 12(3), pp. 300–314 (2017)Google Scholar
  3. 3.
    Gosselin, C.M.: Adaptive robotic mechanical systems: A design paradigm. Journal of Mechanical Desig, 128(1), pp. 192–198 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Pons, J., Rocon, E., Ceres, R,. Reynaerts, D., Saro, B., Levin, S., Van Moorleghem, W.: The manus-hand dextrous robotics upper limb prosthesis: mechanical and manipulation aspects, Autonomous Robots 16(2), pp. 143-163 (2004)CrossRefGoogle Scholar
  5. 5.
    Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M.C., Dario, P.: Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications, IEEE/ASME Transactions On Mechatronics, 12(4), pp. 418-429 (2007)CrossRefGoogle Scholar
  6. 6.
    Dalley, S.A., Wiste, T.E., Withrow, T.J., Goldfarb, M.: Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation, IEEE/ASME transactions on mechatronics, 14(6), pp. 699–706 (2009)CrossRefGoogle Scholar
  7. 7.
    Ozawa, R., Hashirii, K., Kobayashi, H.: Design and control of underactuated tendon-driven mechanisms. In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pp. 1522–1527 (2009)Google Scholar
  8. 8.
    Carbone, G., Rossi, C., Savino, S.: Performance comparison between federica hand and larm hand. International Journal of Advanced Robotic Systems 12(7), pp. 90 (2015)CrossRefGoogle Scholar
  9. 9.
    Dalley, S.A., Wiste, T.E., Varol, H.A., Goldfarb, M.: A multigrasp hand prosthesis for transradial amputees. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 5062–5065 (2010)Google Scholar
  10. 10.
    Baril, M., Lalibert´e, T., Gosselin, C., Routhier, F.: On the design of a mechanically programmable underactuated anthropomorphic prosthetic gripper. Journal of Mechanical Design, 135(12), pp. 121008 (2013)CrossRefGoogle Scholar
  11. 11.
    Kyberd, P.J., Light, C., Chappell, P.H., Nightingale, J.M., Whatley, D., Evans, M.: The design of anthropomorphic prosthetic hands: A study of the southampton hand. Robotica, 19(06), pp. 593–600 (2001)CrossRefGoogle Scholar
  12. 12.
    Rodr´ıguez, N.E.N., Carbone, G., Ceccarelli, M.: Optimal design of driving mechanism in a 1- dof anthropomorphic finger. Mechanism and machine theory, 41(8), pp. 897–911 (2006)CrossRefGoogle Scholar
  13. 13.
    Xu, K., Liu, H., Du, Y., Zhu, X.: Design of an underactuated anthropomorphic hand with mechanically implemented postural synergies. Advanced Robotics, 28(21), pp. 1459-1474 (2014)CrossRefGoogle Scholar
  14. 14.
    Ceccarelli, M., Zottola, M.: Design and simulation of an underactuated finger mechanism for LARM hand. Robotica, 35(3), pp. 1–15 (2015)CrossRefGoogle Scholar
  15. 15.
    Huang, H., Jiang, L., Liu, Y., Hou, L., Cai, H., Liu, H.: The mechanical design and experiments of hit/dlr prosthetic hand. In Robotics and Biomimetics, 2006. ROBIO’06. IEEE International Conference on, pp. 896–901 (2006)Google Scholar
  16. 16.
    Biddiss, E., Chau, T.: Upper-limb prosthetics: critical factors in device abandonment. American journal of physical medicine & rehabilitation, 86(12), pp. 977–987 (2007)Google Scholar
  17. 17.
    Zhang, T., Wang, X.Q., Jiang, L., Wu, X., Feng, W., Zhou, D., Liu, H.: Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic applications. Robotica, 34(10), pp. 2291–2308 (2016)CrossRefGoogle Scholar
  18. 18.
    Rodriguez, J.F., Thomas, J.P., Renaud, J.E.: Design of fused-deposition abs components for stiffness and strength. Journal of Mechanical Design, 125(3), pp. 545-551 (2003)CrossRefGoogle Scholar
  19. 19.
    Uddin, M., Sidek, M., Faizal, M., Ghomashchi, R., Pramanik, A.: Evaluating mechanical properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene styrene parts. Journal of Manufacturing Science and Engineering, 139(8), pp. 081018 (2017)CrossRefGoogle Scholar
  20. 20.
    Buchholz, B., Armstrong, T.J., Goldstein, S.A.: Anthropometric data for describing the kinematics of the human hand. Ergonomics 35(3), pp. 261–273 (1992)CrossRefGoogle Scholar
  21. 21.
    Buchholz, B., Armstrong, T.J.: An ellipsoidal representation of human hand anthropometry. Human factors, 33(4), pp. 429–441 (1991)CrossRefGoogle Scholar
  22. 22.
    McFadden, D., Shubel, E.: Relative lengths of fingers and toes in human males and females. Hormones and Behavior, 42(4), pp 492–500 (2002)CrossRefGoogle Scholar
  23. 23.
    Holgu´ın, P.H., Rico, A´ .A., G´omez, L.P., Munuera, L.M.: The coordinate movement of the interphalangeal joints: A cinematic study. Clinical orthopaedics and related research, 362, pp. 117–124 (1999)Google Scholar
  24. 24.
    Ceccarelli, M., Rodriguez, N.E.N., Carbone, G.: Design and tests of a three finger hand with 1-dof articulated fingers. Robotica, 24(02), pp. 183–196 (2006)CrossRefGoogle Scholar
  25. 25.
    Chen, C.: Power analysis of epicyclic transmissions based on constraints. Journal of Mechanisms and Robotics, 4(4), pp. 041004 (2012)CrossRefGoogle Scholar
  26. 26.
    Liu, S., Chen, B., Caro, S., Briot, S., Harewood, L., Chen, C.: A cable linkage with remote centre of motion. Mechanism and Machine Theory, 105, pp. 583-605 (2016)CrossRefGoogle Scholar
  27. 27.
    Shabana, A.A.: Computational dynamics, John Wiley & Sons (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shao Liu
    • 1
  • Matthew Van
    • 1
  • Zijue Chen
    • 1
  • Chao Chen
    • 1
  1. 1.Laboratory of Motion Generation and Analysis, Department of Mechanical and Aerospace EngineeringMonash UniversityVictoriaAustralia

Personalised recommendations