Advertisement

Coherent and Squeezed States: Introductory Review of Basic Notions, Properties, and Generalizations

  • Oscar Rosas-OrtizEmail author
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

A short review of the main properties of coherent and squeezed states is given in the introductory form. The efforts are addressed to clarify concepts and notions, including some passages of the history of science, with the aim of facilitating the subject for nonspecialists. In this sense, the present work is intended to be complementary to other papers of the same nature and subject in current circulation.

Keywords

Coherent states Squeezed states Nonclassical states Optical detection Optical coherence Wave packets Minimum uncertainty Harmonic oscillator Riccati equation Ermakov equation 

Notes

Acknowledgements

Financial support from Ministerio de Economía y Competitividad (Spain) grant number MTM2014-57129-C2-1-P, Consejería de Educación, Junta de Castilla y León (Spain) grant number VA057U16, and Consejo Nacional de Ciencia y Tecnología (México) project A1-S-24569 is acknowledged.

References

  1. 1.
    L. Mandel, E. Wolf, Coherence properties of optical fields. Rev. Mod. Phys. 37, 231 (1965)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    R.H. Brown, R.Q. Twiss, Correlation between photons in two coherent beams of light. Nature 177, 27 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    R.H. Brown, R.Q. Twiss, Interferometry of the intensity fluctuations in light I. Basic theory: the correlation between photons in coherent beams of radiation. Proc. R. Soc. Lond. A242, 300 (1957)zbMATHGoogle Scholar
  4. 4.
    R.H. Brown, R.Q. Twiss, Interferometry of the intensity fluctuations in light II. An experimental test of the theory for partially coherent light. Proc. R. Soc. Lond. A243, 291 (1958)Google Scholar
  5. 5.
    G.J. Troup, R.G. Turner, Optical coherence theory. Rep. Prog. Phys. 37, 771 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995)CrossRefGoogle Scholar
  7. 7.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  8. 8.
    R.J. Glauber, Photon correlations. Phys. Rev. Lett. 10, 84 (1963)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    D.F. Walls, Evidence for the quantum nature of light. Nature 280, 451 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    R.J. Glauber, Optical coherence and photon statistics, in Quantum Optics and Electronics, ed. by C. DeWitt, A. Blandin, C. Cohen-Tannoudji (Gordon and Breach, New York, 1964), pp. 65–185Google Scholar
  13. 13.
    R.J. Glauber, Quantum Theory of Optical Coherence. Selected Papers and Lectures (Wiley-VCH, Weinheim, 2007)Google Scholar
  14. 14.
    P. Grangier, G. Roger, A. Aspect, Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    W. Rueckner, J. Peidle, Young’s double-slit experiment with single photons and quantum eraser. Am. J. Phys. 81, 951 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    R.S. Aspden, M.J. Padgett, G.C. Spalding, Video recording true single-photon double-slit interference. Am. J. Phys. 84, 671 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J.R. Klauder, The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 11, 123 (1960)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    H. Takahasi, Information theory of quantum-mechanical channels. Adv. Commun. Syst. 1, 227 (1965)CrossRefGoogle Scholar
  20. 20.
    D.R. Robinson, The ground state of the Bose gas. Commun. Math. Phys. 1, 159 (1965)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Stoler, Equivalence classes of minimum uncertainty packets. Phys. Rev. D 1, 3217 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    D. Stoler, Equivalence classes of minimum uncertainty packets II. Phys. Rev. D 4, 1925 (1971)ADSCrossRefGoogle Scholar
  23. 23.
    E.Y.C. Lu, New coherent states of the electromagnetic field. Lett. Nuovo Cimento 2, 1241 (1971)CrossRefGoogle Scholar
  24. 24.
    E.Y.C. Lu, Quantum correlations in two-photon amplification. Lett. Nuovo Cimento 2, 585 (1972)CrossRefGoogle Scholar
  25. 25.
    H.P. Yuen, Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226 (1976)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Dodonov, E.V. Kurmyshev, V.I. Man’ko, Generalized uncertainty relation and correlated coherent states. Phys. Lett. A. 79, 150 (1980)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A.K. Rajagopal, J.T. Marshall, New coherent states with applications to time-dependent systems. Phys. Rev. A 26, 2977 (1982)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    H.P. Yuen, Contractive states and the standard quantum limit for monitoring free-mass positions. Phys. Rev. Lett. 51, 719 (1983)ADSCrossRefGoogle Scholar
  29. 29.
    H.P. Yuen, J.H. Shapiro, Optical communication with two-photon coherent states–Part I: quantum-state propagation and quantum-noise. IEEE Trans. Inf. Theory 24, 657 (1978)ADSzbMATHCrossRefGoogle Scholar
  30. 30.
    J.H. Shapiro, H.P. Yuen, J.A. Machado Mata, Optical communication with two-photon coherent states–Part II: photoemissive detection and structured receiver performance. IEEE Trans. Inf. Theory 25, 179 (1979)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    H.P. Yuen, J.H. Shapiro, Optical communication with two-photon coherent states–Part III: quantum measurements realizable with photoemissive detectors. IEEE Trans. Inf. Theory 26, 78 (1980)ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    P. Hariharan, Optical Interferometry (Academic Press, San Diego, 2003)Google Scholar
  33. 33.
    M.P. Silverman, Quantum Superposition. Counterintuitive Consequences of Coherence, Entanglement, and Interference (Springer, Berlin, 2008)Google Scholar
  34. 34.
    J.N. Hollenhorst, Quantum limits on resonant-mass gravitational-radiation detectors. Phys. Rev. D 19, 1669 (1979)ADSCrossRefGoogle Scholar
  35. 35.
    V.B. Braginsky, Y.I. Vorontsov, K.S. Thorne, Quantum nondemolition measurements. Science 209, 547 (1980)ADSCrossRefGoogle Scholar
  36. 36.
    C.M. Caves, Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    C.M. Caves, K.S. Thorne, R.W.P. Drever, V.D. Sandberg, M. Zimmerman, On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341 (1980)ADSGoogle Scholar
  38. 38.
    K.S. Thorne, Black Holes and Time Warps. Einstein’s Outrageous Legacy (W.W. Norton & Company, New York, 1994)Google Scholar
  39. 39.
    R. Schnabel, N. Mavalvala, D.E. McClelland, P.K. Lam, Quantum metrology for gravitational wave astronomy. Nat. Commun. 1, 121 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, 2nd edn. (World Scientific, Singapore, 2017)zbMATHCrossRefGoogle Scholar
  41. 41.
    D.F. Walls, Squeezed states of light. Nature 306, 141 (1983)ADSCrossRefGoogle Scholar
  42. 42.
    R. Loudon, P.L. Knight, Squeezed light. J. Mod. Opt. 34, 709 (1987)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    M.C. Teich, B.E.A. Saleh, Squeezed states of light. Quantum Opt. 1, 153 (1989)ADSCrossRefGoogle Scholar
  44. 44.
    V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Even and odd coherent states and excitations of a singular oscillator. Physica 72, 597 (1974)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    C.C. Gerry, Non-classical properties of even and odd coherent states. J. Mod. Opt. 40, 1053 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    R.L. de Matos Filho, W. Vogel, Even and odd coherent states of the motion of a trapped ion. Phys. Rev. Lett. 76, 608 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    B. Roy, P. Roy, Coherent states, even and odd coherent states in a finite-dimensional Hilbert space and their properties. J. Phys. A Math. Gen. 31, 1307 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    W. Moore, Schrödinger. Life and Tough (Cambridge University Press, Cambridge, 1987)Google Scholar
  49. 49.
    E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    T.L. Curtright, D.B. Fairlie, C.K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space (World Scientific, Singapore, 2014)zbMATHCrossRefGoogle Scholar
  51. 51.
    A. Kenfack, K. Zyczkowski, Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 6, 396 (2004)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    G.H. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, 2013)zbMATHGoogle Scholar
  53. 53.
    L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence. Opt. Express 4, 205 (1979)ADSGoogle Scholar
  54. 54.
    M.S. Kim, W. Son, V. Buzek, P.L. Knight, Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    X.-b. Wang, Theorem for the beam-splitter entangler. Phys. Rev. A 66, 024303 (2002)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    V.V. Dodonov, V.I. Man’ko (eds.), Theory of Nonclassical States of Light (Taylor and Francis, London, 2003)Google Scholar
  57. 57.
    D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, New York, 2000)zbMATHCrossRefGoogle Scholar
  58. 58.
    L.C. Biedenharn, The quantum group SU q(2) and a q-analogue of the boson operators. J. Phys. A Math. Gen. 22, L873 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    A.J. Macfarlane, On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. J. Phys. A Math. Gen. 22, 4581 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    A.I. Solomon, A characteristic functional for deformed photon phenomenology. Phys. Lett. A 196, 29 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    R.L. de Matos Filho, W. Vogel, Nonlinear coherent states. Phys. Rev. A 54, 4560 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    V.I. Ma’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, f-oscillators and nonlinear coherent states. Phys. Scrip. 55, 528 (1997)Google Scholar
  63. 63.
    F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rep. 251, 267 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    B.K. Bagchi, Supersymmetry in Quantum and Classical Mechanics (Chapman & Hall, Boca Raton, 2001)zbMATHGoogle Scholar
  65. 65.
    H. Aoyama, M. Sato, T. Tanaka, General forms of a N-fold supersymmetric family. Phys. Lett. B 503, 423 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    H. Aoyama, M. Sato, T. Tanaka, N-fold supersymmetry in quantum mechanics: general formalism. Nucl. Phys. B 619, 105 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    B. Mielnik, O. Rosas-Ortiz, Factorization: little or great algorithm? J. Phys. A Math. Gen. 37, 10007 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    A.A. Andrianov, M.V. Ioffe, Nonlinear supersymmetric quantum mechanics: concepts and realizations. J. Phys. A Math. Gen. 45, 503001 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    A. Gangopadhyaya, J. Mallow, C. Rasinari, Supersymmetric Quantum Mechanics: An Introduction, 2nd edn. (World Scientific, Singapore, 2018)zbMATHGoogle Scholar
  70. 70.
    B. Mielnik, Factorization method and new potentials with the oscillator spectrum. J. Math. Phys. 25, 3387 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    J. Beckers, D. Dehin, V. Hussin, Dynamical and kinematical supersymmetries of the quantum harmonic oscillator and the motion in a constant magnetic field. J. Phys. A Math. Gen. 21, 651 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    V.M. Eleonsky, V.G. Korolev, Isospectral deformation of quantum potentials and the Liouville equation. Phys. Rev. A 55, 2580 (1997)ADSCrossRefGoogle Scholar
  73. 73.
    S. Seshadri, V. Balakrishnan, S. Lakshmibala, Ladder operators for isospectral oscillators. J. Math. Phys. 39, 838 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    C.L. Williams, N.N. Pandya, B.G. Bodmann, Coupled supersymmetry and ladder structures beyond the harmonic oscillator. Mol. Phys. 116, 2599 (2018)ADSCrossRefGoogle Scholar
  75. 75.
    Y. Berube-Lauziere, V. Hussin, Comments of the definitions of coherent states for the SUSY harmonic oscillator. J. Phys. A Math. Gen. 26, 6271 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    D.J. Fernandez, V. Hussin, L.M. Nieto, Coherent states for isospectral oscillator Hamiltonians. J. Phys. A Math. Gen. 27, 3547 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    D.J. Fernandez, L. M. Nieto, O. Rosas-Ortiz, Distorted Heisenberg algebra and coherent states for isospectral oscillator Hamiltonians. J. Phys. A Math. Gen. 28, 2693 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    J.O. Rosas-Ortiz, Fock-Bargmann representation of the distorted Heisenberg algebra. J. Phys. A Math. Gen. 29, 3281 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    M.S. Kumar, A. Khare, Coherent states for isospectral Hamiltonians. Phys. Lett. A 217, 73 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    D.J. Fernandez, V. Hussin, Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states. J. Phys. A Math. Gen. 32, 3603 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    D.J. Fernandez, V. Hussin, O. Rosas-Ortiz, Coherent states for Hamiltonians generated by supersymmetry. J. Phys. A Math. Teor. 40, 6491 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    D.J. Fernandez, O. Rosas-Ortiz, V. Hussin, Coherent states for SUSY partner Hamiltonians. J. Phys. Conf. Ser. 128, 012023 (2008)CrossRefGoogle Scholar
  83. 83.
    O. Rosas-Ortiz, O. Castaños, D. Schuch, New supersymmetry-generated complex potentials with real spectra. J. Phys. A Math. Theor. 48, 445302 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    A. Jaimes-Najera, O. Rosas-Ortiz, Interlace properties for the real and imaginary parts of the wave functions of complex-valued potentials with real spectrum. Ann. Phys. 376, 126 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Z. Blanco-Garcia, O. Rosas-Ortiz, K. Zelaya, Interplay between Riccati, Ermakov and Schrödinger equations to produce complex-valued potentials with real energy spectrum. Math. Methods Appl. Sci. 1–14 (2018).  https://doi.org/10.1002/mma.5069; arXiv:1804.05799
  86. 86.
    O. Rosas-Ortiz, K. Zelaya, Bi-orthogonal approach to non-Hermitian Hamiltonians with the oscillator spectrum: generalized coherent states for nonlinear algebras. Ann. Phys. 388, 26 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    K. Zelaya, S. Dey, V. Hussin, O. Rosas-Ortiz, Nonclassical states for non-Hermitian Hamiltonians with the oscillator spectrum. arXiv:1707.05367Google Scholar
  88. 88.
    M. Orzag, S. Salamo, Squeezing and minimum uncertainty states in the supersymmetric harmonic oscillator. J. Phys. A Math. Gen. 21, L1059 (1988)ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    G. Junker, P. Roy, Non-linear coherent states associated with conditionally exactly solvable problems. Phys. Lett. A 257, 113 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    B. Roy, P. Roy, New nonlinear coherent states and some of their nonclassical properties. J. Opt. B Quantum Semiclass. Opt. 2, 65 (2000)ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    R. Roknizadeh, M.K. Tavassoly, The construction of some important classes of generalized coherent states: the nonlinear coherent states method. J. Phys. A Math. Gen. 37, 8111 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    R. Roknizadeh, M.K. Tavassoly, Representations of coherent and squeezed states in a f-deformed Fock space. J. Phys. A Math. Gen. 37, 5649 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    M.K. Tavassoly, New nonlinear coherent states associated with inverse bosonic and f-deformed ladder operators. J. Phys. A Math. Theor. 41, 285305 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    F. Bagarello, Extended SUSY quantum mechanics, intertwining operators and coherent states. Phys. Lett. A 372, 6226 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    S. Twareque Ali, F. Bagarello, Supersymmetric associated vector coherent states and generalized Landau levels arising from two-dimensional supersymmetry. J. Math. Phys. 49, 032110 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    F. Bagarello, Vector coherent states and intertwining operators. J. Phys. A Math. Theor. 42, 075302 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    F. Bagarello, Quons, coherent states and intertwining operators. Phys. Lett. A 373, 2637 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    G.R. Honarasa, M.K. Tavassoly, M. Hatami, Quantum phase properties associated to solvable quantum systems using the nonlinear coherent states approach. Opt. Commun. 282, 2192 (2009)ADSCrossRefGoogle Scholar
  99. 99.
    O. Abbasi, M.K. Tavassoly, Superposition of two nonlinear coherent states \(\frac {\pi }{2}\) out of phase and their nonclassical properties. Opt. Commun. 282, 3737 (2009)Google Scholar
  100. 100.
    M.K. Tavassoly, On the non-classicality features of new classes of nonlinear coherent states. Opt. Commun. 283, 5081 (2010)ADSCrossRefGoogle Scholar
  101. 101.
    O. Safaeian, M.K. Tavassoly, Deformed photon-added nonlinear coherent states and their non-classical properties. J. Phys. A Math. Theor. 44, 225301 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    M. Kornbluth, F. Zypman, Uncertainties of coherent states for a generalized supersymmetric annihilation operator. J. Math. Phys. 54, 012101 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    A. NoormandiPour, M.K. Tavassoly, f-deformed squeezed vacuum and first excited states, their superposition and corresponding nonclassical properties. Commun. Theor. Phys. 61, 521 (2014)ADSzbMATHCrossRefGoogle Scholar
  104. 104.
    V. Hussin, I. Marquette, Generalized Heisenberg algebras, SUSYQM and degeneracies: infinite well and Morse potential. SIGMA 7, 024 (2011)zbMATHGoogle Scholar
  105. 105.
    M. Angelova, A. Hertz, V. Hussin, Squeezed coherent states and the one-dimensional Morse quantum system. J. Phys. A Math. Theor. 45, 244007 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    M. Angelova, A. Hertz, V. Hussin, Corrigendum: squeezed coherent states and the one-dimensional Morse quantum system. J. Phys. A Math. Theor. 46, 129501 (2013)ADSzbMATHCrossRefGoogle Scholar
  107. 107.
    K. Zelaya, O. Rosas-Ortiz, Z. Blanco-Garcia, S. Cruz y Cruz, Completeness and nonclassicality of coherent states for generalized oscillator algebras. Adv. Math. Phys. 2017, 7168592 (2017)Google Scholar
  108. 108.
    B. Mojarevi, A. Dehghani, R.J. Bahrbeig, Excitation on the para-Bose states: nonclassical properties. Eur. Phys. J. Plus 133, 34 (2018)CrossRefGoogle Scholar
  109. 109.
    P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1930)zbMATHGoogle Scholar
  110. 110.
    P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn revised (Oxford University Press, Oxford, 1967)Google Scholar
  111. 111.
    R.H. Brown, The Intensity Interferometer. Its Application to Astronomy (Taylor and Francis Ltd, New York, 1974)Google Scholar
  112. 112.
    E.T. Jaynes, Quantum beats, in Foundations of Radiation Theory and Quantum Electrodynamics, ed. by A.O. Barut (Plenum Press, New York, 1980), pp. 37–43CrossRefGoogle Scholar
  113. 113.
    G.I. Taylor, Interference fringes with feeble light. Proc. Camb. Philos. Soc. Math. Phys. Sci. 15, 114 (1909)Google Scholar
  114. 114.
    J. Schwinger, The theory of quantized fields III. Phys. Rev. 91, 728 (1953)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    J.R. Klauder, Continuous-representation theory I. Postulates of continuous-representation theory. J. Math. Phys. 4, 1055 (1963)zbMATHGoogle Scholar
  116. 116.
    J.R. Klauder, Continuous-representation theory II. Generalized relation between quantum and classical dynamics. J. Math. Phys. 4, 1058 (1963)zbMATHGoogle Scholar
  117. 117.
    J.R. Klauder, E.C.G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968)Google Scholar
  118. 118.
    V. Fock, Verallgemeinerung und Loösung der Diracschen statistischen Gleichung. Z. Phys. 49, 39 (1928)zbMATHGoogle Scholar
  119. 119.
    V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 14, 187 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    D.S. Saxon, Elementary Quantum Mechanics (Holden-Day, Inc., San Francisco, 1968)Google Scholar
  121. 121.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1964)zbMATHGoogle Scholar
  122. 122.
    L.I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, New York, 1949)Google Scholar
  123. 123.
    E. Schrödinger, Der stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften 14, 664 (1926); English translation in E. Schrödinger, Collected Papers on Wave Mechanics. AMS/Chelsea Series, vol. 302, 3rd (Augmented) edn. (American Mathematical Society, Providence, 2003)Google Scholar
  124. 124.
    E. Schrödinger, Collected Papers on Wave Mechanics. AMS/Chelsea Series, vol. 302, 3rd (Augmented) edn. (American Mathematical Society, Providence, 2003)Google Scholar
  125. 125.
    L.I. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill, Singapore, 1968)Google Scholar
  126. 126.
    M. Born, Zur quantenmechanik der stossvorgänge. Z. Phys. 37, 863 (1926); English translation in Quantum Theory and Measurement, ed. by J. Wheeler, W. Zurek (Princeton University Press, Princeton, 1983)Google Scholar
  127. 127.
    B. Mielnik, O. Rosas-Ortiz, Quantum mechanical laws, in Fundamental of Physics, vol 1. Encyclopedia of Life Support Systems (UNESCO, Paris, 2009), pp. 255–326Google Scholar
  128. 128.
    M. Born, Quantenmechanik der stossvorgänge. Z. Phys. 38, 803 (1926)ADSzbMATHCrossRefGoogle Scholar
  129. 129.
    W. Pauli, Über gasentartung und paramagnetismus. Z. Phys. 43, 81 (1927)ADSzbMATHCrossRefGoogle Scholar
  130. 130.
    E.H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)ADSzbMATHCrossRefGoogle Scholar
  131. 131.
    K. Husimi, Miscellanea in elementary quantum mechanics I. Prog. Theor. Phys. 9, 238 (1953)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    K. Husimi, Miscellanea in elementary quantum mechanics II. Prog. Theor. Phys. 9, 381 (1953)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    I.R. Senitzky, Harmonic oscillator wave functions. Phys. Rev. 95, 1115 (1954)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    J. Plebański, Classical properties of oscillator wave packets. Bull. Acad. Polon. Sci. Cl. III 11, 213 (1954)zbMATHGoogle Scholar
  135. 135.
    J. Plebański, On certain wave-packets. Acta Phys. Polon. XIV, 275 (1955)Google Scholar
  136. 136.
    L. Infeld, J. Plebański, On a certain class of unitary transformations. Acta Phys. Pol. XIV, 41 (1955)Google Scholar
  137. 137.
    J. Plebański, Wave functions of a harmonic oscillator. Phys. Rev. 101, 1825 (1956)ADSCrossRefGoogle Scholar
  138. 138.
    S.T. Epstein, Harmonic oscillator wave packets. Am. J. Phys. 27, 291 (1959)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    S.M. Roy, V. Singh, Generalized coherent states and the uncertainty principle. Phys. Rev. D 25, 3413 (1982)ADSMathSciNetCrossRefGoogle Scholar
  140. 140.
    M.M. Nieto, Displaced and squeezed number states. Phys. Lett. A 229, 135 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    M.M. Nieto, L.M. Simmons, Coherent states for general potentials I. Formalism. Phys. Rev. D 20, 1321 (1979)ADSMathSciNetCrossRefGoogle Scholar
  142. 142.
    M.M. Nieto, L.M. Simmons, Coherent states for general potentials II. Confining one-dimensional examples. Phys. Rev. D 20, 1332 (1979)Google Scholar
  143. 143.
    M.M. Nieto, L.M. Simmons, Coherent states for general potentials III. Nonconfining one-dimensional examples. Phys. Rev. D 20, 1342 (1979)Google Scholar
  144. 144.
    M.M. Nieto, Coherent states for general potentials IV. Three-dimensional systems. Phys. Rev. D 22, 391 (1980)Google Scholar
  145. 145.
    V.P. Gutschick, M.M. Nieto, Coherent states for general potentials V. Time evolution. Phys. Rev. D 22, 403 (1980)ADSMathSciNetCrossRefGoogle Scholar
  146. 146.
    M.M. Nieto, L.M. Simmons, V.P. Gutschick, Coherent states for general potentials VI. Conclusions about the classical motion and the WKB approximation. Phys. Rev. D 23, 927 (1981)Google Scholar
  147. 147.
    M. Combescure, A quantum particle in a quadrupole radio-frequency trap. Ann. Inst. Henri Poincare A 44, 293 (1986)MathSciNetzbMATHGoogle Scholar
  148. 148.
    M. Combescure, The quantum stability problem for some class of time-dependent Hamiltonians. Ann. Phys. 185, 86 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    V.N. Gheorghe, F. Vedel, Quantum dynamics of trapped ions. Phys. Rev. A 45, 4828 (1992)ADSCrossRefGoogle Scholar
  150. 150.
    B.M. Mihalcea, A quantum parametric oscillator in a radiofrequency trap. Phys. Scr. 2009, 014006 (2009)CrossRefGoogle Scholar
  151. 151.
    F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps: Physics and Techniques of Charged Particle Field Confinement (Springer, Berlin, 2005)Google Scholar
  152. 152.
    R.d.J. León-Montiel, H.M. Moya-Cessa, Exact solution to laser rate equations: three-level laser as a Morse-like oscillator. J. Mod. Opt. 63, 1521 (2016)Google Scholar
  153. 153.
    L. Zhang, W. Zhang, Lie transformation method on quantum state evolution of a general time-dependent driven and damped parametric oscillator. Ann. Phys. 373, 424 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    A. Contreras-Astorga, J. Negro, S. Tristao, Confinement of an electron in a non-homogeneous magnetic field: integrable vs superintegrable quantum systems. Phys. Lett. A 380, 48 (2016)ADSzbMATHCrossRefGoogle Scholar
  155. 155.
    K. Zelaya, O. Rosas-Ortiz, Exactly solvable time-dependent oscillator-like potentials generated by Darboux transformations. J. Phys. Conf. Ser. 839, 012018 (2017)CrossRefGoogle Scholar
  156. 156.
    A. Contreras-Astorga, A time-dependent anharmonic oscillator. J. Phys. Conf. Ser. 839, 012019 (2017)CrossRefGoogle Scholar
  157. 157.
    H. Cruz, M. Bermúdez-Montaña, R. Lemus, Time-dependent local-to-normal mode transition in triatomic molecules. Mol. Phys. 116, 77 (2018)ADSCrossRefGoogle Scholar
  158. 158.
    J.G. Hartley, J.R. Ray, Coherent states for the time-dependent harmonic oscillator. Phys. Rev. D 25, 382 (1982)ADSCrossRefGoogle Scholar
  159. 159.
    A. Contreras-Astorga, D. Fernandez, Coherent states for the asymmetric penning trap. Int. J. Theor. Phys. 50, 2085 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  160. 160.
    M. Combescure, D. Robert, Coherent States and Applications in Mathematical Physics (Springer, Netherlands, 2012)zbMATHCrossRefGoogle Scholar
  161. 161.
    D. Afshar, S. Mehrabankar, F. Abbasnezhad, Entanglement evolution in the open quantum systems consisting of asymmetric oscillators. Eur. Phys. J. D 70, 64 (2016)ADSzbMATHCrossRefGoogle Scholar
  162. 162.
    B. Mihalcea, Squeezed coherent states of motion for ions confined in quadrupole and octupole ion traps. Ann. Phys. 388, 100 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    N. Ünal, Quasi-coherent states for the Hermite Oscillator. J. Math. Phys. 59, 062104 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  164. 164.
    K. Zelaya, O. Rosas-Ortiz, Comment on “Quasi-coherent states for the Hermite oscillator” [J. Math. Phys. 59, 062104 (2018)]. J. Math. Phys. 60, 054101 (2019). arXiv:1810.03662Google Scholar
  165. 165.
    R. Razo, K. Zelaya, S. Cruz y Cruz, O. Rosas-Ortiz, in preparationGoogle Scholar
  166. 166.
    O. Castaños, D. Schuch, O. Rosas-Ortiz, Generalized coherent states for time-dependent and nonlinear Hamiltonians via complex Riccati equations. J. Phys. A Math. Theor. 46, 075304 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    D. Schuch, O. Castaños, O. Rosas-Ortiz, Generalized creation and annihilation operators via complex nonlinear Riccati equations. J. Phys. Conf. Ser. 442, 012058 (2013)zbMATHCrossRefGoogle Scholar
  168. 168.
    H. Cruz, D. Schuch, O Castaños, O. Rosas-Ortiz, Time-evolution of quantum systems via a complex nonlinear Riccati equation I. Conservative systems with time-independent Hamiltonian. Ann. Phys. 360, 44 (2015)Google Scholar
  169. 169.
    H. Cruz, D. Schuch, O Castaños, O. Rosas-Ortiz, Time-evolution of quantum systems via a complex nonlinear Riccati equation II. Dissipative systems. Ann. Phys. 373, 609 (2016)Google Scholar
  170. 170.
    S. Cruz y Cruz, Z. Gress, Group approach to the paraxial propagation of Hermite-Gaussian modes in a parabolic medium. Ann. Phys. 383, 257 (2017)Google Scholar
  171. 171.
    Z. Gress, S. Cruz y Cruz, A note on the off-axis Gaussian beams propagation in parabolic media. J. Phys. Conf. Ser. 839, 012024 (2017)Google Scholar
  172. 172.
    R. Razo, S. Cruz y Cruz, New confining optical media generated by Darboux transformations. J. Phys. Conf. Ser. 1194, 012091 (2019)Google Scholar
  173. 173.
    R. Román-Ancheyta, M. Berrondo, J. Récamier, Parametric oscillator in a Kerr medium: evolution of coherent states. J. Opt. Soc. Am. B 32, 1651 (2015)ADSCrossRefGoogle Scholar
  174. 174.
    R. Román-Ancheyta, M. Berrondo, J. Récamier, Approximate yet confident solution for a parametric oscillator in a Kerr medium. J. Phys. Conf. Ser. 698, 012008 (2016)CrossRefGoogle Scholar
  175. 175.
    R. Román-Ancheyta, C. González-Gutiérrez, J. Récamier, Influence of the Kerr nonlinearity in a single nonstationary cavity mode. J. Opt. Soc. Am. B 34, 1170 (2017)ADSCrossRefGoogle Scholar
  176. 176.
    R.d.J. León-Montiel, H.M. Moya-Cessa, Generation of squeezed Schrödinger cats in a tunable cavity filled with a Kerr medium. J. Opt. 17, 065202 (2015)Google Scholar
  177. 177.
    J. de Lucas, M. Tobolski, S. Vilariño, Geometry of Riccati equations over normed division algebras. J. Math. Anal. Appl. 440, 394 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    M.A. Rego-Monteiro, E.M.F. Curado, L.M.C.S. Rodrigues, Time evolution of linear and generalized Heisenberg algebra nonlinear Pöschl-Teller coherent states. Phys. Rev. A 96, 052122 (2017)ADSMathSciNetCrossRefGoogle Scholar
  179. 179.
    D. Schuch, Quantum Theory from a Nonlinear Perspective. Riccati Equations in Fundamental Physics (Springer, Switzerland, 2018)Google Scholar
  180. 180.
    W. Heisenberg, Physics and Beyond, Encounters and Conversations (Harper and Row, Publishers, Inc., New York, 1971)Google Scholar
  181. 181.
    W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927); English translation in NASA Technical Report Server, Document ID: 19840008978, web page https://ntrs.nasa.gov/search.jsp?R=19840008978, consulted December 2018
  182. 182.
    P.A.M. Dirac, Quantum electrodynamics without dead wood. Phys. Rev. 139, B684 (1965)ADSMathSciNetCrossRefGoogle Scholar
  183. 183.
    K. Przibram (ed.), Albert Einstein: Letters on Wave Mechanics. Correspondence with H.A. Lorentz, Max Planck, and Erwin Schrödinger (Philosophical Library, New York, 1967)Google Scholar
  184. 184.
    P. Carruthers, M.M. Nieto, Coherent states and the forced quantum oscillator. Am. J. Phys. 33, 537 (1965)ADSMathSciNetCrossRefGoogle Scholar
  185. 185.
    L.S. Brown, Classical limit of the hydrogen atom. Am. J. Phys. 41, 525 (1973)ADSCrossRefGoogle Scholar
  186. 186.
    J. Mostowski, On the classical limit of the Kepler problem. Lett. Math. Phys. 2, 1 (1977)ADSMathSciNetCrossRefGoogle Scholar
  187. 187.
    D. Bhaumik, B. Dutta-Roy, G. Ghosh, Classical limit of the hydrogen atom. J. Phys. A Math. Gen. 19, 1355 (1986)ADSMathSciNetCrossRefGoogle Scholar
  188. 188.
    J.-C. Gay, D. Delande, A. Bommier, Atomic quantum states with maximum localization on classical elliptical orbits. Phys. Rev. A 39, 6587 (1989)ADSCrossRefGoogle Scholar
  189. 189.
    M. Nauenberg, Quantum wave packets on Kepler elliptic orbits. Phys. Rev. A 40, 1133 (1989)ADSMathSciNetCrossRefGoogle Scholar
  190. 190.
    Z.D. Gaeta, C.R. Stroud, Jr., Classical and quantum-mechanical dynamics of a quasiclassical state of the hydrogen atom. Phys. Rev. A 42, 6308 (1990)ADSMathSciNetCrossRefGoogle Scholar
  191. 191.
    J.A. Yeazell, C.R. Stroud, Jr., Observation of fractional revivals in the evolution of a Rydberg atomic wave packet. Phys. Rev. A 43, 5153 (1991)ADSCrossRefGoogle Scholar
  192. 192.
    I. Zaltev, W.M. Zhang, D.H. Feng, Possibility that Schrödinger’s conjecture for the hydrogen-atom coherent states is not attainable. Phys. Rev. A 50, R1973 (1994)ADSCrossRefGoogle Scholar
  193. 193.
    S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (Oxford University Press, Oxford, 2006)zbMATHCrossRefGoogle Scholar
  194. 194.
    J.R. Klauder, Coherent states for the hydrogen atom. J. Phys. A Math. Gen. 29, L293 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  195. 195.
    P. Majumdar, H.S. Sharatchandra, Coherent states for the hydrogen atom. Phys. Rev. A 56, R3322 (1997)ADSMathSciNetCrossRefGoogle Scholar
  196. 196.
    B. Mielnik, J. Plebánski, Combinatorial approach to Baker-Campbell-Hausdorff exponents. Annales de l’I.H.P. Physique théorique 12, 215 (1970)Google Scholar
  197. 197.
    R. Gilmore, Baker-Campbell-Hausdorff formulas. J. Math. Phys. 15, 2090 (1974)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  198. 198.
    M. Ban, Decomposition formulas for su(1,  1) and su(2) Lie algebras and their applications in quantum optics. J. Opt. Soc. Am. B 10, 1347 (1993)Google Scholar
  199. 199.
    A. DasGupta, Disentanglement formulas: an alternative derivation and some applications to squeezed coherent states. Am. J. Phys. 64, 1422 (1996)ADSCrossRefGoogle Scholar
  200. 200.
    A.M. Perelomov, Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222 (1972)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  201. 201.
    A.M. Perelomov, Generalized coherent states and some of their applications (in Russian). Moscow Usp. Fiz. Nauk. 123, 23 (1977); English translation in Sov. Phys. Usp. 20, 703 (1977)Google Scholar
  202. 202.
    A.M. Perelomov, Generalized Coherent States and Their Applications (Springer, Heidelberg, 1986)zbMATHCrossRefGoogle Scholar
  203. 203.
    R. Gilmore, On the properties of coherent states. Rev. Mex. Fis. 23, 143 (1974)Google Scholar
  204. 204.
    W.M. Zhang, D.H. Feng, R. Gilmore, Coherent states-theory and some applications. Rev. Mod. Phys. 62, 867 (1990)ADSMathSciNetCrossRefGoogle Scholar
  205. 205.
    C.M. Caves, B.L. Schumaker, New formalism for two-photon quantum optics I. Quadrature phases and squeezed states. Phys. Rev. A 31, 3068 (1985)Google Scholar
  206. 206.
    B.L. Schumaker, C.M. Caves, New formalism for two-photon quantum optics II. Mathematical foundation and compact notation. Phys. Rev. A 31, 3093 (1985)Google Scholar
  207. 207.
    A.O. Barut, L. Girardello, New ‘coherent’ states associated with noncompact groups. Commun. Math. Phys. 21, 41 (1971)ADSzbMATHCrossRefGoogle Scholar
  208. 208.
    J.R. Klauder, B.-S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)zbMATHCrossRefGoogle Scholar
  209. 209.
    J.-P. Gazeau, J.R. Klauder, Coherent states for systems with discrete and continuous spectrum. J. Phys. A Math. Gen. 32, 123 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  210. 210.
    L. Fonda, N. Mankoc-Brostnik, M. Rosina, Coherent rotational states: their formation and detection. Phys. Rep. 158, 159 (1988)ADSCrossRefGoogle Scholar
  211. 211.
    S.T. Ali, J.-P. Antoine, J.-P. Gazeau, U.A. Mueller, Coherent states and their generalizations: a mathematical overview. Rev. Math. Phys. 7, 1013 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  212. 212.
    S.T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent States, Wavelets, and Their Generalizations, 2nd edn. (Springer, New York, 1999)zbMATHGoogle Scholar
  213. 213.
    J. Bertrand, P. Bertrand, J. Ovarlez, The Mellin transform, in The Transforms and Applications Handbook, ed. by A.D. Poularikas (CRC Press, Boca Raton, 2000)zbMATHGoogle Scholar
  214. 214.
    H. Rosu, C. Castro, q-deformation by intertwining with application to the singular oscillator. Phys. Lett. A 264, 350 (2000)Google Scholar
  215. 215.
    E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
  216. 216.
    B. Buck, C.V. Sukumar, Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132 (1981)ADSCrossRefGoogle Scholar
  217. 217.
    C.V. Sukumar, B. Buck, Multi-phonon generalisation of the Jaynes-Cummings model. Phys. Lett. A 83, 211 (1981)ADSCrossRefGoogle Scholar
  218. 218.
    G. Bastard, Superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693 (1981)ADSCrossRefGoogle Scholar
  219. 219.
    G. Bastard, Theoretical investigations of superlattice band structure in the envelope-function approximation. Phys. Rev. B 24, 5693 (1982)ADSCrossRefGoogle Scholar
  220. 220.
    V. Milanović, Z. Ikonić, Generation of isospectral combinations of the potential and the effective-mass variations by supersymmetric quantum mechanics. J. Phys. A Math. Gen. 32, 7001 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  221. 221.
    A. de Souza Dutra, C.A.S. Almeida, Exact solvability of potentials with spatially dependent effective masses. Phys. Lett. A 275, 25 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  222. 222.
    B. Roy, Lie algebraic approach to singular oscillator with a position-dependent mass. Eur. Phys. Lett. 72, 1 (2005)ADSMathSciNetCrossRefGoogle Scholar
  223. 223.
    A. Ganguly, M.V. Ioffe, L.M. Nieto, A new effective mass Hamiltonian and associated Lamé equation: bound states. J. Phys. A Math. Gen. 39, 14659 (2006)ADSzbMATHCrossRefGoogle Scholar
  224. 224.
    O. Mustafa, S.H. Mazharimousavi, Quantum particles trapped in a position-dependent mass barrier; a d-dimensional recipe. Phys. Lett. A 358, 259 (2006)ADSzbMATHCrossRefGoogle Scholar
  225. 225.
    S. Cruz y Cruz, J. Negro, L.M. Nieto, Classical and quantum position-dependent mass harmonic oscillators. Phys. Lett. A 369, 400 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  226. 226.
    S. Cruz y Cruz, S. Kuru, J. Negro, Classical motion and coherent states for Pöschl-Teller potentials. Phys. Lett. A 372, 1391 (2008)Google Scholar
  227. 227.
    S. Cruz y Cruz, J. Negro, L.M. Nieto, On position-dependent mass harmonic oscillators. J. Phys. Conf. Ser. 128, 012053 (2008)Google Scholar
  228. 228.
    O. Mustafa, S.H. Mazharimousavi, A singular position-dependent mass particle in an infinite potential well. Phys. Lett. A 373, 325 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    S. Cruz y Cruz, O. Rosas-Ortiz, Dynamical equations, invariants and spectrum generating algebras of mechanical systems with position-dependent mass. SIGMA 9, 004 (2013)Google Scholar
  230. 230.
    B. Bagchi, S. Das, S. Ghosh, S. Poria, Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator. J. Phys. A Math. Theor. 46, 032001 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  231. 231.
    M. Lakshmanan, K. Chandrasekar, Generating finite dimensional integrable nonlinear dynamical systems. Eur. Phys. J. Spec. Top. 222, 665 (2013)CrossRefGoogle Scholar
  232. 232.
    S. Cruz y Cruz, Factorization method and the position-dependent mass problem, in Geometric Methods in Physics, ed. by P. Kielanowski, S. Ali, A. Odzijewicz, M. Schlichenmaier, T. Voronov. Trends in Mathematics (Birkhäuser, Basel, 2013), pp. 229–237Google Scholar
  233. 233.
    B.G. da Costa, E. Borges, Generalized space and linear momentum operators in quantum mechanics. J. Math. Phys. 55, 062105 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  234. 234.
    S. Cruz y Cruz, C. Santiago-Cruz, Bounded motion for classical systems with position-dependent mass. J. Phys. Conf. Ser. 538, 012006 (2014)Google Scholar
  235. 235.
    A.G. Nikitin, T.M. Zasadko, Superintegrable systems with position dependent mass. J. Math. Phys. 56, 042101 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  236. 236.
    O. Mustafa, Position-dependent mass Lagrangians: nonlocal transformations, Euler-Lagrange invariance and exact solvability. J. Phys. A Math. Theor. 48, 225206 (2015)ADSzbMATHCrossRefGoogle Scholar
  237. 237.
    D. Ghosch, B. Roy, Nonlinear dynamics of classical counterpart of the generalized quantum nonlinear oscillator driven by position dependent mass. Ann. Phys. 353, 222 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  238. 238.
    B. Bagchi, A.G. Choudhury, P. Guha, On quantized Liénard oscillator and momentum dependent mass. J. Math. Phys. 56, 012105 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  239. 239.
    N. Amir, S. Iqbal, Algebraic solutions of shape-invariant position-dependent effective mass systems. J. Math. Phys. 57, 062105 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  240. 240.
    C. Santiago-Cruz, Isospectral trigonometric Pöschl-Teller potentials with position dependent mass generated by supersymmetry. J. Phys. Conf. Ser. 698, 012028 (2016)CrossRefGoogle Scholar
  241. 241.
    R. Bravo, M.S. Plyushchay, Position-dependent mass, finite-gap systems, and supersymmetry. Phys. Rev. D 93, 105023 (2016)ADSMathSciNetCrossRefGoogle Scholar
  242. 242.
    A.G. Nikitin, Kinematical invariance groups of the 3d Schrödinger equations with position dependent masses. J. Math. Phys. 58, 083508 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  243. 243.
    B.G. da Costa, E.P. Borges, A position-dependent mass harmonic oscillator and deformed space. J. Math. Phys. 59, 042101 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  244. 244.
    A.G.M. Schmidt, A.L. de Jesus, Mapping between charge-monopole and position-dependent mass system. J. Math. Phys. 59, 102101 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  245. 245.
    O.Cherroud, A.-A. Yahiaoui, M. Bentaiba, Generalized Laguerre polynomials with position-dependent effective mass visualized via Wigner’s distribution functions. J. Math. Phys. 58, 063503 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  246. 246.
    S. Cruz y Cruz, C. Santiago-Cruz, Position dependent mass Scarf Hamiltonians generated via the Riccati equation. Math. Methods Appl. Sci. 1–16 (2018).  https://doi.org/10.1002/mma.5068
  247. 247.
    K.B. Wolf, Geometric Optics on Phase Space. Texts and Monographs in Physics (Springer, Berlin, 2004)Google Scholar
  248. 248.
    A. de Souza Dutra, J.A. de Oliviera, Wigner distribution for a class of isospectral position-dependent mass systems. Phys. Scr. 78, 035009 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  249. 249.
    S. Cruz y Cruz, O. Rosas-Ortiz, Position dependent mass oscillators and coherent states. J. Phys. A Math. Theor. 42, 185205 (2009)Google Scholar
  250. 250.
    C. Chithiika Ruby, M. Senthilvelan, On the construction of coherent states of position dependent mass Schrödinger equation endowed with effective potential. J. Math. Phys. 51, 052106 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  251. 251.
    S.-A. Yahiaoui, M. Bentaiba, Pseudo-Hermitian coherent states under the generalized quantum condition with position-dependent mass. J. Phys. A Math. Gen. 45, 444034 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  252. 252.
    S.-A. Yahiaoui, M. Bentaiba, New SU(1,  1) position-dependent effective mass coherent states for a generalized shifted harmonic oscillator. J. Phys. A Math. Gen. 47, 025301 (2014)Google Scholar
  253. 253.
    N. Amir, S. Iqbal, Barut-Girardello coherent states for nonlinear oscillator with position-dependent mass. Commun. Theor. Phys. 66, 41 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  254. 254.
    S.-A. Yahiaoui, M. Bentaiba, Isospectral Hamiltonian for position-dependent mass for an arbitrary quantum system and coherent states. J. Math. Phys. 58, 063507 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  255. 255.
    N. Amir, S. Iqbal, Coherent states of nonlinear oscillators with position-dependent mass: temporal stability and fractional revivals. Commun. Theor. Phys. 68, 181 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  256. 256.
    S. Cruz y Cruz, O. Rosas-Ortiz, SU(1,  1) coherent states for position-dependent mass singular oscillators. Int. J. Theor. Phys. 50, 2201 (2011)Google Scholar
  257. 257.
    D. Dragoman, M. Dragoman, Quantum–Classical Analogies (Springer, New York, 2004)zbMATHCrossRefGoogle Scholar
  258. 258.
    H. Rauch, S.A. Werner, Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement, 2nd edn. (Oxford University Press, Oxford, 2015)zbMATHCrossRefGoogle Scholar
  259. 259.
    F.D. Belgiorno, S.L. Cacciatori, D. Faccio, Hawking Radiation. From Astrophysical Black Holes to Analogous Systems in Lab (World Scientific, Singapore, 2019)Google Scholar
  260. 260.
    L.M. Procopio, O. Rosas-Ortiz, V. Velázquez, On the geometry of spatial biphoton correlation in spontaneous parametric down conversion. Math. Methods Appl. Sci. 38, 2053 (2015)ADSzbMATHCrossRefGoogle Scholar
  261. 261.
    O. Calderón-Losada, J. Flóres, J.P. Villabona-Monsalve, A. Valencia, Measuring different types of transverse momentum correlations in the biphoton’s Fourier plane. Opt. Lett. 41, 1165 (2016)ADSCrossRefGoogle Scholar
  262. 262.
    J. López-Durán, O. Rosas-Ortiz, Quantum and Classical Correlations in the Production of Photon-Pairs with Nonlinear Crystals. J. Phys. Conf. Ser. 839, 012022 (2017)CrossRefGoogle Scholar
  263. 263.
    C. Couteau, Spontaneous parametric down-conversion. Contemp. Phys. 59, 291 (2018)ADSCrossRefGoogle Scholar
  264. 264.
    K. Okamoto, Fundamentals of Optical Waveguides, 2nd edn. (Elsevier, California, 2011)Google Scholar
  265. 265.
    S. Cruz y Cruz, R. Razo, Wave propagation in the presence of a dielectric slab: the paraxial approximation. J. Phys. Conf. Ser. 624, 012018 (2015)Google Scholar
  266. 266.
    S. Cruz y Cruz, O. Rosas-Ortiz, Leaky modes of waveguides as a classical optics analogy of quantum resonances. Adv. Math. Phys. 2015, 281472 (2015)Google Scholar
  267. 267.
    G.R. Honarasa, M. Hatami, M.K. Tavassoly, Quantum squeezing of dark solitons in optical fibers. Commun. Theor. Phys. 56, 322 (2011)zbMATHCrossRefGoogle Scholar
  268. 268.
    O. Rosas-Ortiz, S. Cruz y Cruz, Superpositions of bright and dark solitons supporting the creation of balanced gain and loss optical potentials, arXiv:1805.00058Google Scholar
  269. 269.
    W. Walasik, B. Midya, L. Feng, N.M. Litchinitser, Supersymmetry-guided method for mode selection and optimization in coupled systems. Opt. Lett. 43, 3758 (2018)ADSCrossRefGoogle Scholar
  270. 270.
    A. Contreras-Astorga, V. Jakubský, Photonic systems with two-dimensional landscapes of complex refractive index via time-dependent supersymmetry. Phys. Rev. A 99, 053812 (2019). arXiv:1808.08225Google Scholar
  271. 271.
    R. Gilmore, C.M. Bowden, L.M. Narducci, Classical-quantum correspondence for multilevel systems. Phys. Rev. A 12, 1019 (1975)ADSCrossRefGoogle Scholar
  272. 272.
    S. Cruz y Cruz, B. Mielnik, Non-inertial quantization: truth or illusion? J. Phys. Conf. Ser. 698, 012002 (2016)Google Scholar
  273. 273.
    G. Cozzella, A.G.S. Landulfo, G.E.A. Matsas, D.A.T. Vanzella, Proposal for observing the Unruh effect using classical electrodynamics. Phys. Rev. Lett. 118, 161102 (2017)ADSCrossRefGoogle Scholar
  274. 274.
    A.M. Cetto, L. de la Peña, Real vacuum fluctuations and virtual Unruh radiation. Fortschr. Phys. 65, 1600039 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  275. 275.
    J.A. Rosabal, New perspective on the Unruh effect. Phys. Rev. D 98, 056015 (2018)ADSMathSciNetCrossRefGoogle Scholar
  276. 276.
    D. Bermudez, U. Leonhardt, Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A 93, 053820 (2016)ADSCrossRefGoogle Scholar
  277. 277.
    D. Bermudez, U. Leonhardt, Resonant Hawking radiation as an instability, arXiv:1808.02210Google Scholar
  278. 278.
    J. Drori, Y. Rosenberg, D. Bermudez, Y. Silbergerg, U. Leonhardt, Observation of stimulated hawking radiation in optics, arXiv:1808.09244Google Scholar
  279. 279.
    M.F. Bocko, R. Onofrio, On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress. Rev. Mod. Phys. 68, 755 (1996)ADSCrossRefGoogle Scholar
  280. 280.
    A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  281. 281.
    C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, S. Haroche, Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889 (2007)ADSCrossRefGoogle Scholar
  282. 282.
    C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, S. Haroche, Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73 (2011)ADSCrossRefGoogle Scholar
  283. 283.
    D. Oriti, R. Pereira, L. Sindoni, Coherent states in quantum gravity: a construction based on the flux representation of loop quantum gravity. J. Phys. A Math. Theor. 45, 244004 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  284. 284.
    T. Thiemann, Gauge field theory coherent states (GCS): I. General properties. Class. Quantum Grav. 18, 2025 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  285. 285.
    T. Thiemann, O. Winkler, Gauge field theory coherent states (GCS): II. Peakedness properties. Class. Quantum Grav. 18, 2561 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  286. 286.
    T. Thiemann, O. Winkler, Gauge field theory coherent states (GCS): III. Ehrenfest theorems. Class. Quantum Grav. 18, 4629 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  287. 287.
    T. Thiemann, O. Winkler, Gauge field theory coherent states (GCS): IV. Infinite tensor product and thermodynamical limit. Class. Quantum Grav. 18, 4997 (2001)zbMATHCrossRefGoogle Scholar
  288. 288.
    B.C. Hall, Coherent states and the quantization of (1+1)-dimensional Yang-Mills theory. Rev. Math. Phys. 13, 1281 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  289. 289.
    J.G. Leopold, I.C. Percival, Microwave ionization and excitation of Rydberg atoms. Phys. Rev. Lett. 41, 944 (1978)ADSCrossRefGoogle Scholar
  290. 290.
    E. Lee, A.F. Brunello, D. Farrelly, Coherent states in a Rydberg atom: classical mechanics. Phys. Rev. A 55, 2203 (1997)ADSCrossRefGoogle Scholar
  291. 291.
    D. Meschede, H. Walther, G. Müller, One-atom maser. Phys. Rev. Lett. 54, 551 (1985)ADSCrossRefGoogle Scholar
  292. 292.
    M. Brune, J.M. Raimond, P. Goy, L. Davidovich, S. Haroche, Realization of a two-photon maser oscillator. Phys. Rev. Lett. 59, 1899 (1987)ADSCrossRefGoogle Scholar
  293. 293.
    E.J. Galvez, B.E. Sauer, L. Moorman, P.M. Koch, D. Richards, Microwave ionization of H atoms: breakdown of classical dynamics for high frequencies. Phys. Rev. Lett. 61, 2011 (1988)ADSCrossRefGoogle Scholar
  294. 294.
    D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)zbMATHCrossRefGoogle Scholar
  295. 295.
    L. Davidovich, Quantum optics in cavities and the classical limit of quantum mechanics. AIP Conf. Proc. 464, 3 (1999)ADSCrossRefGoogle Scholar
  296. 296.
    J.M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  297. 297.
    H. Moya-Cessa, Decoherence in atom-field interactions: a treatment using superoperator techniques. Phys. Rep. 432, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  298. 298.
    Y. Berubelauzire, V. Hussin, L.M. Nieto, Annihilation operators and coherent states for the Jaynes-Cummings model. Phys. Rev. A 50, 1725 (1994)ADSCrossRefGoogle Scholar
  299. 299.
    M. Daoud, V. Hussin, General sets of coherent states and the Jaynes-Cummings model. J. Phys. A Math. Gen. 35, 7381 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  300. 300.
    V. Hussin, L.M. Nieto, Ladder operators and coherent states for the Jaynes-Cummings model in the rotating-wave approximation. J. Math. Phys. 46, 122102 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  301. 301.
    J.M. Fink, M. Göpl, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, A. Wallraff, Climbing the Jaynes-Cummings ladder and observing its \(\sqrt {n}\) nonlinearity in a cavity QED system. Nature 454, 315 (2008)Google Scholar
  302. 302.
    F.T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Atomic coherent state in quantum optics. Phys. Rev. A 6, 2211 (1974)ADSCrossRefGoogle Scholar
  303. 303.
    J.-P. Gazeau, V. Hussin, Poincaré contraction of SU(1, l) Fock-Bargmann structure. J. Phys. A Math. Gen 25, 1549 (1992)ADSzbMATHCrossRefGoogle Scholar
  304. 304.
    N. Alvarez, V. Hussin, Generalized coherent and squeezed states based on the h(1) ⊕ su(2) algebra. J. Math. Phys. 43, 2063 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  305. 305.
    A. Wünsche, Duality of two types of SU(1,  1) coherent states and an intermediate type. J. Opt. B Quantum Semiclass. Opt. 5, S429 (2003)CrossRefGoogle Scholar
  306. 306.
    S.R. Miry, M.K. Tavassoly, Generation of a class of SU(1,  1) coherent states of the Gilmore-Perelomov type and a class of SU(2) coherent states and their superposition. Phys. Scr. 85, 035404 (2012)Google Scholar
  307. 307.
    A. Karimi, M.K. Tavassoly, Quantum engineering and nonclassical properties of SU(1,  1) and SU(2) entangled nonlinear coherent states. J. Opt. Soc. Am. B 31, 2345 (2014)Google Scholar
  308. 308.
    D.N. Daneshmand, M.K. Tavassoly, Generation of SU(1,  1) and SU(2) entangled states in a quantized cavity field by strong-driving-assisted classical field approach. Laser Phys. 25, 055203 (2015)Google Scholar
  309. 309.
    O. Rosas-Ortiz, S. Cruz y Cruz, M. Enríquez, SU(1,  1) and SU(2) approaches to the radial oscillator: generalized coherent states and squeezing of variances. Ann. Phys. 346, 373 (2016)Google Scholar
  310. 310.
    B.C. Sanders, Review of entangled coherent states. J. Phys. A Math. Theor. 45, 244002 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  311. 311.
    L. Li, Y.O. Dudin, A. Kuzmich, Entanglement between light and an optical atomic excitation. Nature 498, 466 (2013)ADSCrossRefGoogle Scholar
  312. 312.
    S. Dey, V. Hussin, Entangled squeezed states in noncommutative spaces with minimal length uncertainty relations. Phys. Rev. D 91, 124017 (2015)ADSMathSciNetCrossRefGoogle Scholar
  313. 313.
    A. Motamedinasab, D. Afshar, M. Jafarpour, Entanglement and non-classical properties of generalized supercoherent states. Optik 157, 1166 (2018)ADSCrossRefGoogle Scholar
  314. 314.
    V. Spiridonov, Universal superpositions of coherent states and self-similar potentials. Phys. Rev. A 52, 1909 (1995)ADSCrossRefGoogle Scholar
  315. 315.
    S. Dey, A. Fring, V. Hussin, A squeezed review on coherent states and nonclassicality for non-Hermitian systems with minimal length, arXiv:1801.01139Google Scholar
  316. 316.
    S.T. Ali, R. Roknizadeh, M.K. Tavassoly, Representations of coherent states in non-orthogonal bases. J. Phys. A Math. Gen. 37, 4407 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  317. 317.
    S. Dey, V. Hussin, Noncommutative q-photon-added coherent states. Phys. Rev. A 93, 053824 (2016)ADSCrossRefGoogle Scholar
  318. 318.
    S. Dey, A. Fring, V. Hussin, Nonclassicality versus entanglement in a noncommutative space. Int. J. Mod. Phys. B 31, 1650248 (2017)ADSzbMATHCrossRefGoogle Scholar
  319. 319.
    A. Hertz, S. Dey, V. Hussin, H. Eleuch, Higher order nonclassicality from nonlinear coherent states for models with quadratic spectrum. Symmetry-Basel 8, 36 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  320. 320.
    K. Zelaya, S. Dey, V. Hussin, Generalized squeezed states. Phys. Lett. A 382, 3369 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  321. 321.
    C. Aragone, F. Zypman, Supercoherent states. J. Phys. A Math. Gen. 19, 2267 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  322. 322.
    A.M. El Gradechi, L.M. Nieto, Supercoherent states, super-Kähler geometry and geometric quantization. Commun. Math. Phys. 175, 521 (1996)ADSzbMATHCrossRefGoogle Scholar
  323. 323.
    J. Jayaraman, R. de Lima Rodrigues, A SUSY formulation ála Witten for the SUSY isotonic oscillator canonical supercoherent states. J. Phys. A Math. Gen. 32, 6643 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  324. 324.
    N. Alvarez-Moraga, V. Hussin, sh(2∕2) superalgebra eigenstates and generalized supercoherent and supersqueezed states. Int. J. Theor. Phys. 43, 179 (2004)Google Scholar
  325. 325.
    L.M. Nieto, Coherent and supercoherent states with some recent applications. AIP Conf. Proc. 809, 3 (2006)ADSzbMATHCrossRefGoogle Scholar
  326. 326.
    A.H. El Kinani, M. Daoud, Generalized intelligent states for nonlinear oscillators. Int. J. Mod. Phys. B 15, 2465 (2001)ADSCrossRefGoogle Scholar
  327. 327.
    B. Midya, B. Roy, A. Biswas, Coherent state of a nonlinear oscillator and its revival dynamics. Phys. Scr. 79, 065003 (2009)ADSzbMATHCrossRefGoogle Scholar
  328. 328.
    V.C. Ruby, S. Karthiga, M. Senthilevelan, Ladder operators and squeezed coherent states of a three-dimensional generalized isotonic nonlinear oscillator. J. Phys. A Math. Theor. 46, 025305 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  329. 329.
    B. Roy, P. Roy, Gazeau-Klauder coherent state for the Morse potential and some of its properties. Phys. Lett. A 296, 187 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  330. 330.
    A. Wünsche, Higher-order uncertainty relations. J. Mod. Opt. 53, 931 (2006)ADSzbMATHCrossRefGoogle Scholar
  331. 331.
    M.K. Tavassoly, Gazeau-Klauder squeezed states associated with solvable quantum systems. J. Phys. A Math. Gen. 39, 11583 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  332. 332.
    L. Dello Sbarba, V. Hussin, Degenerate discrete energy spectra and associated coherent states. J. Math. Phys. 48, 012110 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  333. 333.
    M. Angelova, V. Hussin, Generalized and Gaussian coherent states for the Morse potential. J. Phys. A Mat. Theor. 41, 304016 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  334. 334.
    G.R. Honarasa, M.K. Tavassoly, M. Hatami, R. Roknizadeh, Generalized coherent states for solvable quantum systems with degenerate discrete spectra and their nonclassical properties. Phys. A 390, 1381 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  335. 335.
    M.K. Tavassoly, H.R. Jalai, Barut-Girardello and Gilmore-Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties: factorization method. Chin. Phys. B 22, 084202 (2013)CrossRefGoogle Scholar
  336. 336.
    M.N. Hounkonnoua, S. Arjikab, E. Baloïtcha, Ps̈chl-Teller Hamiltonian: Gazeau-Klauder type coherent states, related statistics, and geometry. J. Math. Phys. 55, 123502 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  337. 337.
    S.E. Hoffmann, V. Hussin, I. Marquette, Y.-Z. Zhang, Non-classical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials. J. Phys. A Math. Theor. 51, 085202 (2018)zbMATHCrossRefGoogle Scholar
  338. 338.
    S.E. Hoffmann, V. Hussin, I. Marquette, Y.-Z. Zhang, Coherent states for ladder operators of general order related to exceptional orthogonal polynomials. J. Phys. A Math. Theor. 51, 315203 (2018). arXiv:1803.01318Google Scholar
  339. 339.
    J.-P. Antoine, J.-P. Gazeau, P. Monceau, J.R. Klauder, K.A. Penson, Temporally stable coherent states for infinite well and Pöschl–Teller potentials. J. Math. Phys. 42, 2349 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  340. 340.
    H. Bergeron, J.-P. Gazeau, P. Siegl, A. Youssef, Semi-classical behavior of Pöschl-Teller coherent states. Europhys. Lett. 92, 60003 (2011)ADSCrossRefGoogle Scholar
  341. 341.
    J.-P. Gazeau, M. del Olmo, Pissot q-coherent states quantization of the harmonic oscillator. Ann. Phys. 330, 220 (2012)ADSzbMATHCrossRefGoogle Scholar
  342. 342.
    J.-P. Gazeau, Coherent States in Quantum Physics (Wiley, Weinheim, 2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physics DepartmentCinvestavMéxico CityMexico

Personalised recommendations