Advertisement

Nonlinear Supersymmetry as a Hidden Symmetry

  • Mikhail S. PlyushchayEmail author
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

Nonlinear supersymmetry is characterized by supercharges to be higher order in bosonic momenta of a system, and thus has a nature of a hidden symmetry. We review some aspects of nonlinear supersymmetry and related to it exotic supersymmetry and nonlinear superconformal symmetry. Examples of reflectionless, finite-gap and perfectly invisible \(\mathcal {P}\mathcal {T}\)-symmetric zero-gap systems, as well as rational deformations of the quantum harmonic oscillator and conformal mechanics, are considered, in which such symmetries are realized.

Keywords

Hidden symmetry Exotic supersymmetry Nonlinear superconformal symmetry Reflectionless and finite-gap systems Perfect invisibility 

Notes

Acknowledgements

Financial support from research projects Convenio Marco Universidades del Estado (Project USA1555) and FONDECYT Project 1190842, Chile, and MINECO (Project MTM2014-57129-C2-1-P), Spain, is acknowledged.

References

  1. 1.
    M. Cariglia, Hidden symmetries of dynamics in classical and quantum physics. Rev. Mod. Phys. 86, 1283 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    V. Frolov, P. Krtous, D. Kubiznak, Black holes, hidden symmetries, and complete integrability. Living Rev. Relativ. 20(1), 6 (2017)Google Scholar
  3. 3.
    B. Khesin, G. Misolek, Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176, 116 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    B.A. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups (Springer, Berlin, 2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    S. Yu. Dubov, V.M. Eleonskii, N. E. Kulagin, Equidistant spectra of anharmonic oscillators. Zh. Eksp. Teor. Fiz. 102, 814 (1992)MathSciNetzbMATHGoogle Scholar
  6. 6.
    S.Y. Dubov, V.M. Eleonskii, N.E. Kulagin, Equidistant spectra of anharmonic oscillators. Chaos 4, 47 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A.P.Veselov, A.B. Shabat, Dressing chains and the spectral theory of the Schrödinger operator. Funct. Anal. Appl. 27, 81 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A.A. Andrianov, M.V. Ioffe, V.P. Spiridonov, Higher derivative supersymmetry and the Witten index. Phys. Lett. A 174, 273 (1993)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    D.J. Fernandez C, SUSUSY quantum mechanics. Int. J. Mod. Phys.A 12, 171 (1997)Google Scholar
  10. 10.
    D.J. Fernandez C, V. Hussin, Higher-order SUSY, linearized nonlinear Heisenberg algebras and coherent states. J. Phys. A: Math. Gen. 32, 3603 (1999)Google Scholar
  11. 11.
    B. Bagchi, A. Ganguly, D. Bhaumik, A. Mitra, Higher derivative supersymmetry, a modified Crum–Darboux transformation and coherent state. Mod. Phys. Lett. A 14, 27 (1999)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Plyushchay, Hidden nonlinear supersymmetries in pure parabosonic systems. Int. J. Mod. Phys. A 15, 3679 (2000)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    D.J. Fernandez, J. Negro, L.M. Nieto, Second-order supersymmetric periodic potentials. Phys. Lett. A 275, 338 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    S.M. Klishevich, M.S. Plyushchay, Nonlinear supersymmetry, quantum anomaly and quasi-exactly solvable systems. Nucl. Phys. B 606, 583 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S.M. Klishevich, M.S. Plyushchay, Nonlinear supersymmetry on the plane in magnetic field and quasi-exactly solvable systems. Nucl. Phys. B 616, 403 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    S.M. Klishevich, M.S. Plyushchay, Nonlinear holomorphic supersymmetry, Dolan–Grady relations and Onsager algebra. Nucl. Phys. B 628, 217 (2002)zbMATHGoogle Scholar
  17. 17.
    S.M. Klishevich, M.S. Plyushchay, Nonlinear holomorphic supersymmetry on Riemann surfaces. Nucl. Phys. B 640, 481 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    D.J. Fernandez C, B. Mielnik, O. Rosas-Ortiz, B. F. Samsonov, Nonlocal supersymmetric deformations of periodic potentials. J. Phys. A 35, 4279 (2002)Google Scholar
  19. 19.
    R. de Lima Rodrigues, The Quantum mechanics SUSY algebra: An Introductory review. arXiv: hep-th/0205017 (2002)Google Scholar
  20. 20.
    C. Leiva, M.S. Plyushchay, Superconformal mechanics and nonlinear supersymmetry. JHEP 0310, 069 (2003)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Anabalon, M.S. Plyushchay, Interaction via reduction and nonlinear superconformal symmetry. Phys. Lett. B 572, 202 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    B. Mielnik, O. Rosas-Ortiz, Factorization: little or great algorithm? J. Phys. A 37, 10007 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M.V. Ioffe, D.N. Nishnianidze, SUSY intertwining relations of third order in derivatives. Phys. Lett. A 327, 425 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    F. Correa, M.A. del Olmo, M.S. Plyushchay, On hidden broken nonlinear superconformal symmetry of conformal mechanics and nature of double nonlinear superconformal symmetry. Phys. Lett. B 628, 157 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    F. Correa, M.S. Plyushchay, Hidden supersymmetry in quantum bosonic systems. Ann. Phys. 322, 2493 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    F. Correa, L.M. Nieto, M.S. Plyushchay, Hidden nonlinear supersymmetry of finite-gap Lamé equation. Phys. Lett. B 644, 94 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    F. Correa, M.S. Plyushchay, Peculiarities of the hidden nonlinear supersymmetry of Pöschl–Teller system in the light of Lamé equation. J. Phys. A 40, 14403 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    A. Ganguly, L.M. Nieto, Shape-invariant quantum Hamiltonian with position-dependent effective mass through second order supersymmetry. J. Phys. A 40, 7265 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    F. Correa, L.M. Nieto, M.S. Plyushchay, Hidden nonlinear su(2|2) superunitary symmetry of N = 2 superextended 1D Dirac delta potential problem. Phys. Lett. B 659, 746 (2008)Google Scholar
  30. 30.
    F. Correa, V. Jakubsky, L.M. Nieto, M.S. Plyushchay, Self-isospectrality, special supersymmetry, and their effect on the band structure. Phys. Rev. Lett. 101, 030403 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    F. Correa, V. Jakubsky, M.S. Plyushchay, Finite-gap systems, tri-supersymmetry and self-isospectrality. J. Phys. A 41, 485303 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    F. Correa, V. Jakubsky, M.S. Plyushchay, Aharonov-Bohm effect on AdS(2) and nonlinear supersymmetry of reflectionless Pöschl–Teller system. Ann. Phys. 324, 1078 (2009)ADSzbMATHCrossRefGoogle Scholar
  33. 33.
    F. Correa, G.V. Dunne, M. S. Plyushchay, The Bogoliubov/de Gennes system, the AKNS hierarchy, and nonlinear quantum mechanical supersymmetry. Ann. Phys. 324, 2522 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    F. Correa, H. Falomir, V. Jakubsky, M.S. Plyushchay, Supersymmetries of the spin-1/2 particle in the field of magnetic vortex, and anyons. Ann. Phys. 325, 2653 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    V. Jakubsky, L.M. Nieto, M.S. Plyushchay, The origin of the hidden supersymmetry. Phys. Lett. B 692, 51 (2010)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    M.S. Plyushchay, L.M. Nieto, Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry. Phys. Rev. D 82, 065022 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    M.S. Plyushchay, A. Arancibia, L.M. Nieto, Exotic supersymmetry of the kink-antikink crystal, and the infinite period limit. Phys. Rev. D 83, 065025 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    V. Jakubsky, M.S. Plyushchay, Supersymmetric twisting of carbon nanotubes. Phys. Rev. D 85, 045035 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    F. Correa, M. S. Plyushchay, Self-isospectral tri-supersymmetry in PT-symmetric quantum systems with pure imaginary periodicity. Ann. Phys. 327, 1761 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    F. Correa, M.S. Plyushchay, Spectral singularities in PT-symmetric periodic finite-gap systems. Phys. Rev. D 86, 085028 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A.A. Andrianov, M.V. Ioffe, Nonlinear supersymmetric quantum mechanics: concepts and realizations. J. Phys. A 45, 503001 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    A. Arancibia, J. Mateos Guilarte, M.S. Plyushchay, Effect of scalings and translations on the supersymmetric quantum mechanical structure of soliton systems. Phys. Rev. D 87(4), 045009 (2013)Google Scholar
  43. 43.
    A. Arancibia, J. Mateos Guilarte, M.S. Plyushchay, Fermion in a multi-kink-antikink soliton background, and exotic supersymmetry. Phys. Rev. D 88, 085034 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    F. Correa, O. Lechtenfeld, M. Plyushchay, Nonlinear supersymmetry in the quantum Calogero model. JHEP 1404, 151 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    R. Bravo, M.S. Plyushchay, Position-dependent mass, finite-gap systems, and supersymmetry. Phys. Rev. D 93(10), 105023 (2016)Google Scholar
  46. 46.
    M.S. Plyushchay, Supersymmetry without fermions. arXiv:hep-th/9404081 (1994 )Google Scholar
  47. 47.
    M.S. Plyushchay, Deformed Heisenberg algebra, fractional spin fields and supersymmetry without fermions. Ann. Phys. 245, 339 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    J. Gamboa, M. Plyushchay, J. Zanelli, Three aspects of bosonized supersymmetry and linear differential field equation with reflection. Nucl. Phys. B 543, 447 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    J.F. Cariñena, M.S. Plyushchay, Ground-state isolation and discrete flows in a rationally extended quantum harmonic oscillator. Phys. Rev. D 94(10), 105022 (2016)Google Scholar
  50. 50.
    L. Inzunza, M. S. Plyushchay, Hidden superconformal symmetry: where does it come from? Phys. Rev. D 97(4), 045002 (2018)Google Scholar
  51. 51.
    L. Inzunza, M.S. Plyushchay, Hidden symmetries of rationally deformed superconformal mechanics. Phys. Rev. D 99(2), 025001 (2019)Google Scholar
  52. 52.
    G.W. Gibbons, R.H. Rietdijk, J.W. van Holten, SUSY in the sky. Nucl. Phys. B 404, 42 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    M. Tanimoto, The Role of Killing–Yano tensors in supersymmetric mechanics on a curved manifold. Nucl. Phys. B 442, 549 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    F. De Jonghe, A.J. Macfarlane, K. Peeters, J.W. van Holten, New supersymmetry of the monopole. Phys. Lett. B 359, 114 (1995)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    M.S. Plyushchay, On the nature of fermion-monopole supersymmetry. Phys. Lett. B 485, 187 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    J. Mateos Guilarte, M.S. Plyushchay, Perfectly invisible \(\mathcal {P}\mathcal {T}\)-symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry. JHEP 1712, 061 (2017)Google Scholar
  57. 57.
    J. Mateos Guilarte, M.S. Plyushchay, Nonlinear symmetries of perfectly invisible PT-regularized conformal and superconformal mechanics systems. J. High Energy Phys. 2019(1), 194 (2019)Google Scholar
  58. 58.
    E. Witten, Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513 (1981)ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    E. Witten, Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253 (1982)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rept. 251, 267 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    G. Junker, Supersymmetric Methods in Quantum, Statistical and Solid State Physics, Revised and Enlarged Edition (IOP Publishing, Bristol, 2019)zbMATHCrossRefGoogle Scholar
  62. 62.
    M.S. Plyushchay, Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis. Ann. Phys. 377, 164 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    D. Bonatsos, C. Daskaloyannis, P. Kolokotronis, D. Lenis, The symmetry algebra of the N-dimensional anisotropic quantum harmonic oscillator with rational ratios of frequencies and the Nilsson model. arXiv preprint hep-th/9411218 (1994)Google Scholar
  64. 64.
    J. de Boer, F. Harmsze, T. Tjin, Nonlinear finite W symmetries and applications in elementary systems. Phys. Rept. 272, 139 (1996)ADSCrossRefGoogle Scholar
  65. 65.
    A.V. Turbiner, Quasiexactly solvable problems and SL(2) group. Commun. Math. Phys. 118, 467 (1988)ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    F. Finkel, A. Gonzalez-Lopez, N. Kamran, P.J. Olver, M.A. Rodriguez, Lie algebras of differential operators and partial integrability. arXiv preprint hep-th/9603139 (1996)Google Scholar
  67. 67.
    M.A. Shifman, New findings in quantum mechanics (partial algebraization of the spectral problem). Int. J. Mod. Phys.A 4, 2897 (1989)Google Scholar
  68. 68.
    V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)zbMATHCrossRefGoogle Scholar
  69. 69.
    M.G. Krein, On a continuous analogue of a Christoffel formula from the theory of orthogonal polynomials. Dokl. Akad. Nauk SSSR 113, 970 (1957)MathSciNetzbMATHGoogle Scholar
  70. 70.
    V.E. Adler, A modification of Crum’s method. Theor. Math. Phys. 101, 1381 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    J.F. Cariñena, L. Inzunza, M.S. Plyushchay, Rational deformations of conformal mechanics. Phys. Rev. D 98, 026017 (2018)ADSMathSciNetCrossRefGoogle Scholar
  72. 72.
    S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons (Plenum, New York, 1984)zbMATHGoogle Scholar
  73. 73.
    A. Arancibia, M.S. Plyushchay, Chiral asymmetry in propagation of soliton defects in crystalline backgrounds. Phys. Rev. D 92(10), 105009 (2015)Google Scholar
  74. 74.
    A. Arancibia, M.S. Plyushchay, Transmutations of supersymmetry through soliton scattering, and self-consistent condensates. Phys. Rev. D 90(2), 025008 (2014)Google Scholar
  75. 75.
    C. Quesne, V.M. Tkachuk, Deformed algebras, position dependent effective masses and curved spaces: an exactly solvable Coulomb problem. J. Phys. A 37, 4267 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    A. Ganguly, S. Kuru, J. Negro, L. M. Nieto, A Study of the bound states for square potential wells with position-dependent mass. Phys. Lett. A 360, 228 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    S.C. y Cruz, J. Negro, L.M. Nieto, Classical and quantum position-dependent mass harmonic oscillators. Phys. Lett. A 369, 400 (2007)Google Scholar
  78. 78.
    S.C. y Cruz, O. Rosas-Ortiz, Position dependent mass oscillators and coherent states. J. Phys. A 42, 185205 (2009)Google Scholar
  79. 79.
    A. Arancibia, F. Correa, V. Jakubský, J. Mateos Guilarte, M.S. Plyushchay, Soliton defects in one-gap periodic system and exotic supersymmetry. Phys. Rev. D 90(12), 125041 (2014)Google Scholar
  80. 80.
    A. Schulze-Halberg, Wronskian representation for confluent supersymmetric transformation chains of arbitrary order. Eur. Phys. J. Plus 128, 68 (2013)CrossRefGoogle Scholar
  81. 81.
    F. Correa, V. Jakubsky, M.S. Plyushchay, PT-symmetric invisible defects and confluent Darboux–Crum transformations. Phys. Rev. A 92(2), 023839 (2015)Google Scholar
  82. 82.
    A. Contreras-Astorga, A. Schulze-Halberg, Recursive representation of Wronskians in confluent supersymmetric quantum mechanics. J. Phys. A 50(10), 105301 (2017)Google Scholar
  83. 83.
    F. Calogero, Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419 (1971)ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    A.P. Polychronakos, Physics and mathematics of Calogero particles. J. Phys. A 39, 12793 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rept. Prog. Phys. 70, 947 (2007)ADSMathSciNetCrossRefGoogle Scholar
  86. 86.
    A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    P. Dorey, C. Dunning, R. Tateo, Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. A 34, 5679 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    P. Dorey, C. Dunning, R. Tateo, Supersymmetry and the spontaneous breakdown of PT symmetry. J. Phys. A 34, L391 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    A. Fring, M. Znojil, PT-symmetric deformations of Calogero models. J. Phys. A 41, 194010 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    A. Fring, PT-symmetric deformations of integrable models. Philos. Trans. R. Soc. Lond. A 371, 20120046 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N. Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018)CrossRefGoogle Scholar
  92. 92.
    V. de Alfaro, S. Fubini, G. Furlan, Conformal invariance in quantum mechanics. Nuovo Cimento 34A, 569 (1976)ADSCrossRefGoogle Scholar
  93. 93.
    J. Beckers, V. Hussin, Dynamical supersymmetries of the harmonic oscillator. Phys. Lett. A 118, 319 (1986)ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    J. Beckers, D. Dehin, V, Hussin, Symmetries and supersymmetries of the quantum harmonic oscillator. J. Phys. A 20, 1137 (1987)Google Scholar
  95. 95.
    J. Beckers, D. Dehin, V, Hussin, On the Heisenberg and orthosymplectic superalgebras of the harmonic oscillator. J. Math. Phys. 29, 1705 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    E.A. Ivanov, S.O. Krivonos, V.M. Leviant, Geometry of conformal mechanics. J. Phys. A 22, 345 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    C. Duval, P.A. Horvathy, On Schrödinger superalgebras. J. Math. Phys. 35, 2516 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend, A. Van Proeyen, Black holes and superconformal mechanics. Phys. Rev. Lett. 81, 4553 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    J.A. de Azcarraga, J.M. Izquierdo, J.C. Perez Bueno, P.K. Townsend, Superconformal mechanics and nonlinear realizations. Phys. Rev. D 59, 084015 (1999)ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    G.W. Gibbons, P.K. Townsend, Black holes and Calogero models. Phys. Lett. B 454, 187 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    J. Beckers, Y. Brihaye, N. Debergh, On realizations of ‘nonlinear’ Lie algebras by differential operators. J. Phys. A 32, 2791 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    J. Michelson, A. Strominger, The geometry of (super)conformal quantum mechanics. Commun. Math. Phys. 213, 1 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    S. Cacciatori, D. Klemm, D. Zanon, W(infinity) algebras, conformal mechanics, and black holes. Classical Quantum Gravity 17, 1731 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    G. Papadopoulos, Conformal and superconformal mechanics. Classical Quantum Gravity 17, 3715 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    E.E. Donets, A. Pashnev, V.O. Rivelles, D.P. Sorokin, M. Tsulaia, N = 4 superconformal mechanics and the potential structure of AdS spaces. Phys. Lett. B 484, 337 (2000)Google Scholar
  106. 106.
    B. Pioline and A. Waldron, Quantum cosmology and conformal invariance. Phys. Rev. Lett. 90, 031302 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    H.E. Camblong, C.R. Ordonez, Anomaly in conformal quantum mechanics: From molecular physics to black holes. Phys. Rev. D 68, 125013 (2003)ADSMathSciNetCrossRefGoogle Scholar
  108. 108.
    C. Leiva, M.S. Plyushchay, Conformal symmetry of relativistic and nonrelativistic systems and AdS/CFT correspondence. Ann. Phys. 307, 372 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    C. Duval, G.W. Gibbons, P. Horvathy, Celestial mechanics, conformal structures and gravitational waves. Phys. Rev.D 43, 3907 (1991)Google Scholar
  110. 110.
    P.D. Alvarez, J.L. Cortes, P.A. Horvathy, M.S. Plyushchay, Super-extended noncommutative Landau problem and conformal symmetry. JHEP 0903, 034 (2009)ADSMathSciNetCrossRefGoogle Scholar
  111. 111.
    F. Correa, H. Falomir, V. Jakubsky, M.S. Plyushchay, Hidden superconformal symmetry of spinless Aharonov-Bohm system. J. Phys. A 43, 075202 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    T. Hakobyan, S. Krivonos, O. Lechtenfeld, A. Nersessian, Hidden symmetries of integrable conformal mechanical systems. Phys. Lett. A 374, 801 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    C. Chamon, R. Jackiw, S. Y. Pi, L. Santos, Conformal quantum mechanics as the CFT1 dual to AdS2. Phys. Lett. B 701, 503 (2011)ADSMathSciNetCrossRefGoogle Scholar
  114. 114.
    Z. Kuznetsova, F. Toppan, D-module representations of N = 2,  4,  8 superconformal algebras and their superconformal mechanics. J. Math. Phys. 53, 043513 (2012)Google Scholar
  115. 115.
    K. Andrzejewski, J. Gonera, P. Kosinski, P. Maslanka, On dynamical realizations of l-conformal Galilei groups. Nucl. Phys. B 876, 309 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    M.S. Plyushchay, A. Wipf, Particle in a self-dual dyon background: hidden free nature, and exotic superconformal symmetry. Phys. Rev. D 89(4), 045017 (2014)Google Scholar
  117. 117.
    S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-front holographic QCD and emerging confinement. Phys. Rept. 584, 1 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    M. Masuku, J.P. Rodrigues, De Alfaro, Fubini and Furlan from multi matrix systems. JHEP 1512, 175 (2015)zbMATHGoogle Scholar
  119. 119.
    O. Evnin, R. Nivesvivat, Hidden symmetries of the Higgs oscillator and the conformal algebra. J. Phys. A 50(1), 015202 (2017)Google Scholar
  120. 120.
    I. Masterov, Remark on higher-derivative mechanics with l-conformal Galilei symmetry. J. Math. Phys. 57(9), 092901 (2016)Google Scholar
  121. 121.
    K. Ohashi, T. Fujimori, M. Nitta, Conformal symmetry of trapped Bose-Einstein condensates and massive Nambu-Goldstone modes. Phys. Rev. A 96(5), 051601 (2017)Google Scholar
  122. 122.
    R. Bonezzi, O. Corradini, E. Latini, A. Waldron, Quantum mechanics and hidden superconformal symmetry. Phys. Rev. D 96(12), 126005 (2017)Google Scholar
  123. 123.
    U. Niederer, The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 46, 191 (1973)Google Scholar
  124. 124.
    J.F. Cariñena, A.M. Perelomov, M.F. Rañada, M. Santander, A quantum exactly solvable nonlinear oscillator related to the isotonic oscillator. J. Phys. A Math. Theor. 41, 085301 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    J.M. Fellows, R.A. Smith, Factorization solution of a family of quantum nonlinear oscillators. J. Phys. A 42, 335303 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    D. Gómez-Ullate, N. Kamran, R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces. J. Approx. Theory 162, 897 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    I. Marquette, C. Quesne, New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems. J. Math. Phys. 54, 102102 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  128. 128.
    I. Marquette, New families of superintegrable systems from k-step rational extensions, polynomial algebras and degeneracies. J. Phys. Conf. Ser. 597, 012057 (2015)CrossRefGoogle Scholar
  129. 129.
    J.F. Cariñena, M.S. Plyushchay, ABC of ladder operators for rationally extended quantum harmonic oscillator systems. J. Phys. A 50(27), 275202 (2017)Google Scholar
  130. 130.
    L. Inzunza, M.S. Plyushchay, Klein four-group and Darboux duality in conformal mechanics. arXiv preprint arXiv:1902.00538 (2019)Google Scholar
  131. 131.
    G.P. Dzhordzhadze, I.T. Sarishvili, Symmetry groups in the extended quantization scheme. Theor. Math. Phys. 93, 1239 (1992)MathSciNetCrossRefGoogle Scholar
  132. 132.
    G. Jorjadze, Constrained quantization on symplectic manifolds and quantum distribution functions. J. Math. Phys. 38, 2851 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    J. Hietarinta, B. Grammaticos, B. Dorizzi, A. Ramani, Coupling constant metamorphosis and duality between integrable Hamiltonian systems. Phys. Rev. Lett. 53, 1707 (1984)ADSMathSciNetCrossRefGoogle Scholar
  134. 134.
    M. Cariglia, A. Galajinsky, G.W. Gibbons, P.A. Horvathy, Cosmological aspects of the Eisenhart-Duval lift. Eur. Phys. J. C 78(4), 314 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de Santiago de ChileCasillaChile

Personalised recommendations