Coherent States in Quantum Optics: An Oriented Overview

  • Jean-Pierre GazeauEmail author
Part of the CRM Series in Mathematical Physics book series (CRM)


In this survey, various generalizations of Glauber–Sudarshan coherent states are described in a unified way, with their statistical properties and their possible role in non-standard quantizations of the classical electromagnetic field. Some statistical photon-counting aspects of Perelomov SU(2) and SU(1, 1) coherent states are emphasized.


Coherent states Quantum optics Quantization Photon-counting statistics Group theoretical approaches 



This research is supported in part by the Ministerio de Economía y Competitividad of Spain under grant MTM2014-57129-C2-1-P and the Junta de Castilla y León (grant VA137G18). The author is also indebted to the University of Valladolid. He thanks M. del Olmo (UVA) for helpful discussions about this review. He addresses special thanks to Y. Hassoumi (Rabat University) and to the Organizers of the Workshop QIQE’2018 in Al-Hoceima, Morocco, for valuable comments and questions which allowed to improve significantly the content of this review.


  1. 1.
    A.H. El Kinani, M. Daoud, Generalized intelligent states for an arbitrary quantum system. J. Phys. A Math. Gen. 34, 5373–5387 (2001)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E.E. Hach III, P.M. Alsing, C.C. Gerry, Violations of a Bell inequality for entangled SU(1,  1) coherent states based on dichotomic observables. Phys. Rev. A 93, 042104-1–042104-8 (2016)Google Scholar
  3. 3.
    S. Cruz y Cruz, Z. Gress, Group approach to the paraxial propagation of Hermite-Gaussian modes in a parabolic medium. Ann. Phys. 383, 257–277 (2017)Google Scholar
  4. 4.
    S.E. Hoffmann, V. Hussin, I. Marquette, Y.-Z. Zhang, Non-classical behaviour of coherent states for systems constructed using exceptional orthogonal polynomials. J. Phys. A Math. Theor. 51, 085202-1–085202-16 (2018)Google Scholar
  5. 5.
    K. Górska, A. Horzela, F.H. Szafraniec, Coherence, squeezing and entanglement: an example of peaceful coexistence, in J.-P. Antoine, F. Bagarello, J.P. Gazeau, eds. Coherent States and their applications: a contemporary panorama, in Proceedings of the CIRM Workshop, 13–18 Nov 2016. Springer Proceedings in Physics (SPPHY), vol. 205 (2018), pp. 89–117Google Scholar
  6. 6.
    E.E. Hach, R. Birrittella, P.M. Alsing, C.C. Gerry, SU(1,  1) parity and strong violations of a Bell inequality by entangled Barut-Girardello coherent states. J. Opt. Soc. Am. B 35, 2433–2442 (2018)Google Scholar
  7. 7.
    R.J. Glauber, Photons correlations. Phys. Rev. Lett. 10, 84–86 (1963)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.-P. Gazeau, F.H. Szafraniec, Holomorphic Hermite polynomials and a non-commutative plane. J. Phys. A Math. Theor. 44, 495201-1–495201-13 (2011)Google Scholar
  9. 9.
    W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, Berlin, 1966)CrossRefGoogle Scholar
  10. 10.
    J. Schwinger, The theory of quantized fields. III. Phys. Rev. 91, 728–740 (1953)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    R.J. Glauber, Coherent and incoherent states of radiation field. Phys. Rev. 131, 2766–2788 (1963)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Mandel, E. Wolf, Coherence properties of optical fields. Rev. Mod. Phys. 37, 231–287 (1965)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    K.E. Cahill, R.J. Glauber, Ordered expansions in Boson amplitude operators. Phys. Rev. 177, 1857–1881 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    B.S. Agarwal, E. Wolf, Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. Phys. Rev. D 2, 2161–2186 (I), 2187–2205 (II), 2206–2225 (III) (1970)Google Scholar
  17. 17.
    E. Schrödinger, Der stetige Übergang von der Mikro- zur Makromechanik. Naturwiss 14, 664 (1926)ADSCrossRefGoogle Scholar
  18. 18.
    J.R. Klauder, The action option and the Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 11, 123 (1960)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    J.R. Klauder, Continuous-representation theory I. Postulates of continuous-representation theory. J. Math. Phys. 4, 1055–1058 (1963)zbMATHGoogle Scholar
  20. 20.
    J.R. Klauder, Continuous-representation theory II. Generalized relation between quantum and classical dynamics. J. Math. Phys. 4, 1058–1073 (1963)zbMATHGoogle Scholar
  21. 21.
    J.R. Klauder, B.S. Skagerstam (ed.), Coherent States. Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)zbMATHGoogle Scholar
  22. 22.
    A.M. Perelomov, Coherent states for arbitrary lie group. Commun. Math. Phys. 26, 222–236 (1972)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A.M. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)CrossRefGoogle Scholar
  24. 24.
    W.-M. Zhang, D.H. Feng, R. Gilmore, Coherent states: theory and some applications. Rev. Mod. Phys. 26, 867–927 (1990)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    D.H. Feng, J.R. Klauder, M. Strayer (ed.) Coherent States: Past, Present and Future, in Proceedings of the 1993 Oak Ridge Conference (World Scientific, Singapore, 1994)Google Scholar
  26. 26.
    S.T. Ali, J.-P Antoine, J.-P. Gazeau, Coherent States, Wavelets and their Generalizations (2000), 2d edn., Theoretical and Mathematical Physics (Springer, New York, 2014)Google Scholar
  27. 27.
    V.V. Dodonov, ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B Quantum Semiclass. Opt. 4, R1 (2002)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    V.V. Dodonov, V.I. Man’ko (ed.), Theory of Nonclassical States of Light (Taylor & Francis, London, 2003)Google Scholar
  29. 29.
    A. Vourdas, Analytic representations in quantum mechanics. J. Phys. A 39, R65 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    J.-P. Gazeau, Coherent States in Quantum Physics (Wiley-VCH, Berlin, 2009)CrossRefGoogle Scholar
  31. 31.
    S.T. Ali, J.P. Antoine, F. Bagarello, J.P. Gazeau, Special issue on coherent states: mathematical and physical aspects. J. Phys. A Math. Theor. 45 (2012)Google Scholar
  32. 32.
    J.-P. Antoine, F. Bagarello, J.P. Gazeau, Coherent States and their applications: a contemporary panorama, in Proceedings of the CIRM Workshop, 13–18 Nov 2016. Springer Proceedings in Physics (SPPHY), vol. 205 (2018)Google Scholar
  33. 33.
    N. Cotfas, J.-P. Gazeau, K. Górska, Complex and real Hermite polynomials and related quantizations. J. Phys. A Math. Theor. 43, 305304-1–305304-14 (2010)Google Scholar
  34. 34.
    S.T. Ali, F. Bagarello, J.-P. Gazeau, Quantizations from reproducing kernel spaces. Ann. Phys. 332, 127–142 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    J.-P. Gazeau, M.A. del Olmo, Pisot q-coherent states quantization of the harmonic oscillator. Ann. Phys. 330, 220–245 (2013)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. De Sole, V. Kac, On integral representations of q-gamma and q-beta functions. Rend. Mat. Acc. Lincei 9, 11–29 (2005). ArXiv: math.QA/0302032Google Scholar
  37. 37.
    M. El Baz, R. Fresneda, J.-P. Gazeau, Y. Hassouni, Coherent state quantization of paragrassmann algebras. J. Phys. A Math. Theor. 43, 385202-1–385202-15 (2010); Corrigendum J. Phys. A Math. Theor. 45, 079501-1–079501-2 (2012)Google Scholar
  38. 38.
    M. Fox, Quantum Optics: An Introduction (Oxford University, New York, 2006)zbMATHGoogle Scholar
  39. 39.
    S.T. Ali, J.-P. Gazeau, B. Heller, Coherent states and Bayesian duality. J. Phys. A Math. Theor. 41, 365302-1–365302-22 (2008)Google Scholar
  40. 40.
    J.-P. Gazeau, E. Huguet, M. Lachièze-Rey, J. Renaud, Fuzzy spheres from inequivalent coherent states quantizations. J. Phys. A Math. Theor. 40, 10225–10249 (2007)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    P. Jordan, Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem”. Z. Phys. 94, 531–535 (1935)ADSCrossRefGoogle Scholar
  42. 42.
    T. Holstein, H. Primakoff, Phys. Rev. 58, 1098–1113 (1940)ADSCrossRefGoogle Scholar
  43. 43.
    J. Schwinger, On Angular Momentum, Unpublished Report, Harvard University, Nuclear Development Associates, Inc., United States Department of Energy (through predecessor agency the Atomic Energy Commission), Report Number NYO-3071 (1952).Google Scholar
  44. 44.
    J.-P. Gazeau, M. del Olmo, Covariant integral quantization of the unit disk, submitted (2018). ArXiv:1810.10399 [math-ph]Google Scholar
  45. 45.
    Y. Aharonov, E.C. Lerner, H.W. Huang, J.M. Knight, Oscillator phase states, thermal equilibrium and group representations. J. Math. Phys. 14, 746–755 (2011)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. O. Barut, L. Girardello, New “Coherent” states associated with non-compact groups. Commun. Math. Phys. 21, 41–55 (1971)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    J.-P. Antoine, J.-P. Gazeau, J.R. Klauder, P. Monceau, K.A. Penson, J. Math. Phys. 42, 2349–2387 (2001)Google Scholar
  48. 48.
    L. Susskind, J. Glogower, Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1 1, 49–61 (1964)MathSciNetGoogle Scholar
  49. 49.
    H.M. Moya-Cessa, F. Soto-Eguibar, Introduction to Quantum Optics (Rinton, Paramus, 2011)Google Scholar
  50. 50.
    E.M.F. Curado, S. Faci, J.-P. Gazeau, D. Noguera, in progress.Google Scholar
  51. 51.
    H. Bergeron, E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, Symmetric generalized binomial distributions. J. Math. Phys. 54, 123301-1–123301-22 (2013)Google Scholar
  52. 52.
    E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, Nonlinear coherent states for optimizing quantum information. Phys. Scr. 82, 038108-1–038108-9 (2010)Google Scholar
  53. 53.
    E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, On a generalization of the binomial distribution and its Poisson-like limit. J. Stat. Phys. 146, 264–280 (2012)Google Scholar
  54. 54.
    H. Bergeron, E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, Generating functions for generalized binomial distributions. J. Math. Phys. 53, 103304-1–103304-22 (2012)Google Scholar
  55. 55.
    L. Mandel, Fluctuations of photons beams and their correlations. Proc. Phys. Soc. (London) 72, 1037–1048 (1958); Fluctuations of photon beams: the distribution of photoelectrons. Proc. Phys. Soc. 74, 233–243 (1959)Google Scholar
  56. 56.
    L. Mandel, E. Wolf, Selected Papers on Coherence and Fluctuations of Light, vols. 1, 2 (Dover, New York, 1970)Google Scholar
  57. 57.
    D.N. Klyshko, Observable signs of nonclassical light. Phys. Lett. A 213, 7–15 (1996)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford University, Oxford 2000)zbMATHGoogle Scholar
  59. 59.
    P. Koczyk, P. Wiewior, C. Radzewicz, Photon counting statistics - undergraduate experiment. Am. J. Phys. 64(1996), 240–245 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University, Cambridge, 2004)CrossRefGoogle Scholar
  61. 61.
    H.A. Bachor, T.C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim, 2004)CrossRefGoogle Scholar
  62. 62.
    M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Single-photon sources and detectors (Invited Review Article). Rev. Sci. Instrum. 82, 071101-25 (2011)ADSCrossRefGoogle Scholar
  63. 63.
    C. Huerta Alderete, Liliana Villanueva Vergara, B.M. Rodríguez-Lara, Nonclassical and semiclassical para-Bose states. Phys. Rev. A 95, 043835-1–043835-7 (2017)Google Scholar
  64. 64.
    P.A.M. Dirac, The quantum theory of emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.APC, UMR 7164Univ Paris Diderot, Sorbonne Paris CitéParisFrance
  2. 2.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations