The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions

  • Fatih Erman
  • Manuel GadellaEmail author
  • Haydar Uncu
Part of the CRM Series in Mathematical Physics book series (CRM)


We show how a proper use of the Lippmann–Schwinger equation simplifies the calculations to obtain scattering states for one dimensional systems perturbed by N Dirac delta equations. Here, we consider two situations. In the former, attractive Dirac deltas perturbed the free one dimensional Schrödinger Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For completeness, we show that the method to obtain bound states use comparable formulas, although not based on the Lippmann–Schwinger equation. Then, the attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain explicit expressions for the scattering wave functions. Here, we need regularisation techniques that we implement via heat kernel regularisation.


Scattering states Schrödinger and Salpeter one dimensional Hamiltonians Contact perturbations Gamow wave functions Lippmann–Schwinger equation 



We dedicate this paper to Professor Véronique Hussin for her contributions to science and her friendship. The present work has been fully financed by TUBITAK from Turkey under the “2221 - Visiting Scientist Fellowship Programme”. We are very grateful to TUBITAK for this support. We also acknowledge Osman Teoman Turgut for clarifying discussions and his interest in the present research. This work was also sponsored by the Ministerio de Economía y Competitividad of Spain (Project No. MTM2014-57129-C2-1-P with EU-FEDER support) and the Junta de Castilla y León (Projects VA057U16, VA137G18 and BU229P18).


  1. 1.
    S. Albeverio, F. Gesztesy, R. Høeg-Krohn, H. Holden, Solvable Models in Quantum Mechanics (AMS Chelsea Series, Providence RI, 2004)Google Scholar
  2. 2.
    Y.N. Demkov, V.N. Ostrovskii, Zero-range Potentials and Their Applications in Atomic Physics (Plenum, New York, 1988)CrossRefGoogle Scholar
  3. 3.
    M. Belloni, R.W. Robinett, The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics. Phys. Rep. 540, 25–122 (2014)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators Solvable Schrödinger-type Operators (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  5. 5.
    M.H. Al-Hashimi, A.M. Shalaby, U.-J.Wiese, Asymptotic freedom, dimensional transmutation, and an infrared conformal fixed point for the δ-function potential in one-dimensional relativistic quantum mechanics. Phys. Rev. D 89, 125023 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    F. Erman, M. Gadella, H. Uncu, One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials. Phys. Rev. D 95, 045004 (2017)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Calçada, J.T. Lunardi, L.A. Manzoni, W. Monteiro, Distributional approach to point interactions in one-dimensional quantum mechanics. Front. Phys. 2, 23 (2014)Google Scholar
  8. 8.
    F. Erman, M. Gadella, S. Tunalı, H. Uncu, A singular one-dimensional bound state problem and its degeneracies. Eur. Phys. J. Plus 132, 352 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Erman, M. Gadella, H. Uncu, On scattering from the one dimensional multiple Dirac delta potentials. Eur. J. Phys. 39, 035403 (2018)CrossRefGoogle Scholar
  10. 10.
    R. de L. Kronig, W.G. Penney, Quantum mechanics of electrons in crystal lattices. Proc. R. Soc. A 130, 499 (1931)Google Scholar
  11. 11.
    C. Kittel, Introduction to Solid State Physics 8th edn. (Wiley, New York, 2005)zbMATHGoogle Scholar
  12. 12.
    I.R. Lapidus, Resonance scattering from a double δ-function potential. Am. J. Phys. 50, 663–664 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    P. Senn, Threshold anomalies in one dimensional scattering. Am. J. Phys. 56, 916–921 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    P.R. Berman, Transmission resonances and Bloch states for a periodic array of delta function potentials. Am. J. Phys. 81, 190–201 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S.H. Patil, Quadrupolar, triple δ-function potential in one dimension. Eur. J. Phys. 629–640 (2009)Google Scholar
  16. 16.
    V.E. Barlette, M.M. Leite, S.K. Adhikari, Integral equations of scattering in one dimension. Am. J. Phys. 69, 1010–1013 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    D. Lessie, J. Spadaro, One dimensional multiple scattering in quantum mechanics. Am. J. Phys. 54, 909–913 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Alvarez, M. Gadella, L.M. Nieto, A study of resonances in a one dimensional model with singular Hamiltonian and mass jump. Int. J. Theor. Phys. 50, 2161–2169 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J.J. Alvarez, M. Gadella, L.P. Lara, F.H. Maldonado-Villamizar, Unstable quantum oscillator with point interactions: Maverick resonances, antibound states and other surprises. Phys. Lett. A 377, 2510–2519 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Bohm, in The Rigged Hilbert Space and Quantum Mechanics. Springer Lecture Notes in Physics, vol. 78 (Springer, New York, 1978)Google Scholar
  21. 21.
    J.E. Roberts, Rigged Hilbert spaces in quantum mechanics. Commun. Math. Phys. 3, 98–119 (1966)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J.P. Antoine, Dirac formalism and symmetry problems in quantum mechanics. I. General formalism. J. Math. Phys. 10, 53–69 (1969)ADSzbMATHGoogle Scholar
  23. 23.
    O. Melsheimer, Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. J. Math. Phys. 15, 902–916 (1974)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Gadella, F. Gómez, On the mathematical basis of the Dirac formulation of quantum mechanics. Int. J. Theor. Phys. 42, 2225–2254 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Bohm, Quantum Mechanics. Foundations and Applications (Springer, Berlin, New York, 2002)Google Scholar
  26. 26.
    M.C. Fischer, B. Gutiérrez-Medina, M.G. Raizen, Observation of the quantum Zeno and anti-Zeno effects in an unstable system. Phys. Rev. Lett. 87, 40402 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    C. Rothe, S.L. Hintschich, A.P. Monkman, Violation of the exponential-decay law at long times. Phys. Rev. Lett. 96, 163601 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    A. Bohm, Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics. J. Math. Phys. 22 (12), 2813–2823 (1981)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Bohm, M. Gadella, in Dirac Kets, Gamow Vectors and Gelfand Triplets. Springer Lecture Notes in Physics, vol. 348 (Springer, Berlin, 1989)Google Scholar
  30. 30.
    O. Civitarese, M. Gadella, Physical and mathematical aspects of Gamow states. Phys. Rep. 396, 41–113 (2004)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    O. Civitarese, M. Gadella, Gamow states as solutions of a modified Lippmann–Schwinger equation. Int. J. Mod. Phys. E 25, 1650075 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Reed, B. Simon, Analysis of Operators (Academic, New York, 1978), p. 55Google Scholar
  33. 33.
    M. Gadella, F. Gómez, The Lippmann–Schwinger equations in the rigged Hilbert space. J. Phys. A: Math. Gen. 35, 8505–8511 (2002)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    T. Berggren, Expectation value of an operator in a resonant state. Phys. Lett. B 373, 1–4 (1996)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    O. Civitarese, M. Gadella, R. Id Betan, On the mean value of the energy for resonance states. Nucl. Phys. A 660, 255–266 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Izmir Institute of TechnologyUrlaIzmirTurkey
  2. 2.Departamento de Física TeóricaAtómica y Óptica and IMUVA, Universidad de ValladolidValladolidSpain
  3. 3.Department of PhysicsAdnan Menderes UniversityAydınTurkey

Personalised recommendations