Advertisement

Visual Perception and Eye Movements

  • Mark W. GreenleeEmail author
  • Hubert Kimmig
Chapter
Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)

Abstract

Our perception of the world appears to be steady and focused, despite the fact that our eyes are constantly moving. In this chapter, we review studies on the neural mechanisms and visual phenomena that endow us with stable visual perception despite frequent eye movements and gaze shifts. We describe how sensitivity to stationary and moving stimuli is suppressed just before and during a saccadic eye movement, a phenomenon referred to as saccadic suppression. We also depict the neural correlates of saccadic suppression based on studies conducted in alert monkeys during single-unit recordings and in human subjects using functional MRI. In addition to saccadic suppression, the phenomena of saccadic suppression of displacement and saccadic mislocalization suggest that motion sensitivity and perceived location of objects are altered during eye movements. For example, target motion during saccades goes largely unnoticed. Clearly visible targets that are flashed during an eye movement are apparently displaced towards the location of the end point of the saccade. These findings suggest that visual perception is based on the spatio-temporal integration of information gathered during sequential fixation periods. To ensure stability of our percepts during eye movements, some form of compensation or remapping must take place to compensate for retinal displacements of stimuli in a viewed scene. We also examine the interactions that take place between motion perception and pursuit eye movement. Furthermore, we review findings from behavioral, psychophysical and imaging studies in human observers and single-unit recordings in non-human primates that are relevant to perceptual phenomena arising during saccadic and pursuit eye movements. These studies suggest that conscious vision results from the dynamic interplay between sensory and motor processes. Specifically, we propose that our perception of the visual world is built up over time during consecutive fixations.

Notes

Acknowledgements

The authors thank Jale Özyurt, Sebastian M. Frank, John S. Werner and Lothar Spillmann for their helpful comments. Author MWG was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, GR 988/25-1).

Bibliography

  1. Albright, A. D., & Stoner, G. R. (1995). Visual motion perception. Proceedings of the National Academy of Sciences of the United States of America, 92, 2433–2440.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20(1), 303–330.CrossRefPubMedGoogle Scholar
  3. Andersen, R. A., Snyder, L. H., Batista, A. P., Buneo, C. A., & Cohen, Y. E. (1998). Posterior parietal areas specialized for eye movements (LIP) and reach (PRR) using a common coordinate frame. Novartis Foundation Symposium, 218, 109–122.Google Scholar
  4. Awater, H., & Lappe, M. (2006). Mislocalization of perceived saccade target position induced by perisaccadic visual stimulation. Journal of Neuroscience, 26(1), 12–20.CrossRefPubMedGoogle Scholar
  5. Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.CrossRefPubMedGoogle Scholar
  6. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.CrossRefPubMedGoogle Scholar
  7. Baumann, O., Frank, G., Rutschmann, R. M., & Greenlee, M. W. (2007). Cortical activation during sequences of memory-guided saccades: A functional MRI study. NeuroReport, 18(5), 451–455.CrossRefPubMedGoogle Scholar
  8. Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bischof, N., & Kramer, E. (1968). Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen [Investigations and considerations of directional perception during voluntary saccadic eye movements]. Psychologische Forschung, 32(3), 185–218.CrossRefPubMedGoogle Scholar
  10. Blurton, S. P., Raabe, M., & Greenlee, M. W. (2011) Differential cortical activation during saccadic adaptation. Journal of Neurophysiology, 107, 1738–1747.Google Scholar
  11. Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177–178.CrossRefPubMedGoogle Scholar
  12. Brandt, T., Bartenstein, P., Janek, A., & Dieterich, M. (1998). Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain, 121, 1749–1758.CrossRefPubMedGoogle Scholar
  13. Bremmer, F. (2011). Multisensory space: From eye-movements to self-motion. Journal of Physiology, 589(Pt 4), 815–823.CrossRefPubMedGoogle Scholar
  14. Bremmer, F., Duhamel, J. R., Ben Hamed, S., & Graf, W. (2002) Heading encoding in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16, 1554–1568.Google Scholar
  15. Bremmer, F., Ilg, U. J., Thiele, A., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology, 77, 944–961.CrossRefPubMedGoogle Scholar
  16. Bremmer, F., Kubischik, M., Hoffmann, K.-P., & Krekelberg, B. (2009). Neural dynamics of saccadic suppression. Journal of Neuroscience, 29(40), 12374–12383.CrossRefPubMedGoogle Scholar
  17. Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15(6), 719–722.CrossRefPubMedGoogle Scholar
  18. Bridgeman, B., Kirch, M., & Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception and Psychophysics, 29(4), 336–342.CrossRefGoogle Scholar
  19. Britten, K. H. (2008). Mechanisms of self-motion perception. Annual Review of Neuroscience, 31, 389–410.CrossRefPubMedGoogle Scholar
  20. Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745–4765.CrossRefPubMedGoogle Scholar
  21. Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371, 511–513.CrossRefPubMedGoogle Scholar
  22. Burr, D. C. (2014). Motion perception: Human psychophysics. In: J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 763–776). Cambridge, MA, USA: MIT Press.Google Scholar
  23. Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. The Journal of Physiology, 197(3), 551–566.Google Scholar
  24. Campbell, F. W., & Maffei, L. (1981). The influence of spatial frequency and contrast on the perception of moving patterns. Vision Research, 21(5), 713–721.CrossRefPubMedGoogle Scholar
  25. Chung, S. T. L., Legge, G. E., & Tjan, B. S. (2002). Spatial-frequency characteristics of letter identification in central and peripheral vision. Vision Research, 42(18), 2137–2152.CrossRefPubMedGoogle Scholar
  26. Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.CrossRefPubMedGoogle Scholar
  27. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 215–229.Google Scholar
  28. Cornelissen, F. W., & Greenlee, M. W. (2000). Visual memory for random block patterns defined by luminance and color contrast. Vision Research, 40(3), 287–299.CrossRefPubMedGoogle Scholar
  29. Cowan, N. (2004). Working memory capacity. New York: Psychology Press, Taylor & Francis.Google Scholar
  30. Crespi, S., Biagi, L., D’avossa, G., Burr, D. C., Tosetti, M., & Morrone, M. C. (2011). Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention. PLoS ONE, 6(7), e21661.Google Scholar
  31. Curcio, C. A., Sloan, K. R., Packer, O., Hendrickson, A. E., & Kalina, R. E. (1987). Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science, 236, 579–582.CrossRefPubMedGoogle Scholar
  32. D’avossa, G., Tosetti, M., Crespi, S., Biagi, L., Burr, D. C., & Morrone, M. C. (2007). Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nature Neuroscience, 10(2), 249–255.Google Scholar
  33. DeAngelis, G. C. & Angelaki, D. E. (2012). Visual-vestibular integration for self-motion perception. In M. M. Murray & M. T. Wallace (Eds.), The neural bases of multisensory processes. Boca Raton, FL: CRC Press.Google Scholar
  34. Desmurget, M., Pélisson, D., Urquizar, C., Prablanc, C., Alexander, G. E., & Grafton, S. T. (1998). Functional anatomy of saccadic adaptation in humans. Nature Neuroscience, 1(6), 524–528.CrossRefPubMedGoogle Scholar
  35. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.CrossRefPubMedGoogle Scholar
  36. Deubel, H., Schneider, W. X., & Bridgeman, B. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36(7), 985–996.CrossRefPubMedGoogle Scholar
  37. Diamond, M. R., Ross, J., & Morrone, M. C. (2000). Extraretinal control of saccadic suppression. Journal of Neuroscience, 20(9), 3449–3455.CrossRefPubMedGoogle Scholar
  38. Ditchburn, R. W., & Ginsborg, B. L. (1952). Vision with a stabilized retinal image. Nature, 170, 36–37.CrossRefPubMedGoogle Scholar
  39. Dodge, R. (1900). Visual perception during eye movement. Psychological Review, 7, 454–465.CrossRefGoogle Scholar
  40. Dubner, R., & Zeki, S. M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research, 35(2), 528–532.CrossRefPubMedGoogle Scholar
  41. Dukelow, S. P., DeSouza, J. F., Culham, J. C., van den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. Journal of Neurophysiology, 86, 1991–2000.CrossRefPubMedGoogle Scholar
  42. Eickhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R., & Zilles, K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Human Brain Mapping, 27(7), 611–621.CrossRefPubMedGoogle Scholar
  43. Fechner, G. T. (1889). Elemente der Psychophysik. Leipzig: Breitkopf & Härtel Verlag.Google Scholar
  44. Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. Oxford, U.K.: Oxford University Press.CrossRefGoogle Scholar
  45. Fischer, B. (1986). The role of attention in the preparation of visually guided eye movements in monkey and man. Psychological Research, 48(4), 251–257.CrossRefPubMedGoogle Scholar
  46. Fischer, B., & Boch, R. (1981). Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Experimental Brain Research, 44(2), 129–137.CrossRefPubMedGoogle Scholar
  47. Fischer, B., Biscaldi, M., & Gezeck, S. (1997). On the development of voluntary and reflexive components in human saccade generation. Brain Research, 754, 285–297.CrossRefPubMedGoogle Scholar
  48. Frank, S. M., Baumann, O., Mattingley, J. B., & Greenlee, M. W. (2014). Vestibular and visual responses in human posterior insular cortex. Journal of Neurophysiology, 112(10), 2481–2491.CrossRefPubMedGoogle Scholar
  49. Gerardin, P., Miquée, A., Urquizar, C., & Pélisson, D. (2012). Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades. NeuroImage, 61(4), 1100–1112.CrossRefPubMedGoogle Scholar
  50. Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.CrossRefPubMedGoogle Scholar
  51. Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. Journal of Neurophysiology, 35(4), 560–574.Google Scholar
  52. Greenlee, M. W., Schira, M. M., & Kimmig, H. (2002). Coherent motion pops out during smooth pursuit. NeuroReport, 13(10), 1313–1316.CrossRefPubMedGoogle Scholar
  53. Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207, 3–17.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). A sequence of object processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping, 6, 316–328.CrossRefPubMedGoogle Scholar
  55. Guldin, W. O., & Grüsser, O. J. (1998). Is there a vestibular cortex? Trends in Neurosciences, 21(6), 254–259.CrossRefPubMedGoogle Scholar
  56. Guthrie, B. L., Porter, J. D., & Sparks, D. L. (1983). Corollary discharge provides accurate eye position. Science, 221, 1193–1195.CrossRefPubMedGoogle Scholar
  57. Haarmeier, T., Thier, P., Repnow, M., & Petersen, D. (1997). False perception of motion in a patient who cannot compensate for eye movements. Nature, 389, 849–852.Google Scholar
  58. Hamker, F. H., Zirnsak, M., Ziesche, A., & Lappe, M. (2011). Computational models of spatial updating in peri-saccadic perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1564), 554–571.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632–635.Google Scholar
  60. Henderson, J. M. (1997). Transsaccadic memory and integration during real-world object perception. Psychological Science, 8, 51–55.CrossRefGoogle Scholar
  61. Helmholtz, H. (1867). Handbuch der Physiologischen Optik. Leipzig: Leopold Voss.Google Scholar
  62. Hess, R. F., & Nordby, K. (1986). Spatial and temporal limits of vision in the achromat. The Journal of Physiology, 371, 365–385.Google Scholar
  63. Hirsch, J., & Curcio, C. A. (1989). The spatial resolution capacity of human foveal retina. Vision Research, 29(9), 1095–1101.CrossRefPubMedGoogle Scholar
  64. Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception and Psychophysics, 45(2), 162–174.CrossRefPubMedGoogle Scholar
  65. Honda, H. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Research, 31(11), 1915–1921.CrossRefPubMedGoogle Scholar
  66. Hopp, J. J., & Fuchs, A. F. (2004). The characteristics and neuronal substrate of saccadic eye movement plasticity. Progress in Neurobiology, 72(1), 27–53.CrossRefPubMedGoogle Scholar
  67. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. Journal of Neuroscience, 22(16), 7195–7205.CrossRefPubMedGoogle Scholar
  70. Ilg, U. J., Schumann, S., & Thier, P. (2004). Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron, 43, 145–151.CrossRefPubMedGoogle Scholar
  71. Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 213, 420–456.CrossRefGoogle Scholar
  72. James, W. (1890). The principles of psychology. Holt: New York.Google Scholar
  73. Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2004). Visual information transfer across eye movements in the monkey. Vision Research, 44(25), 2901–2917.CrossRefPubMedGoogle Scholar
  75. Kimmig, H., Ohlendorf, S., Speck, O., Sprenger, A., Rutschmann, R. M., Haller, S., et al. (2008). fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements. Neuropsychologia, 46, 2203–2213.CrossRefPubMedGoogle Scholar
  76. Kolev, O., Mergner, T., Kimmig, H., & Becker, W. (1996). Detection thresholds for object motion and self-motion during vestibular and visuo-oculomotor stimulation. Brain Research Bulletin, 40(5–6), 451–458.CrossRefPubMedGoogle Scholar
  77. Komatsu, H., & Wurtz, R. H. (1988a). Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology, 60(2), 580–603.Google Scholar
  78. Komatsu, H., & Wurtz, R. H. (1988b). Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. Journal of Neurophysiology, 60(2), 621–644.Google Scholar
  79. Kourtzi, Z., & Kanwisher, N. (2000). Cortical regions involved in perceiving object shape. Journal of Neuroscience, 20, 3310–3318.CrossRefPubMedGoogle Scholar
  80. Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897–1916.CrossRefPubMedGoogle Scholar
  81. Li, W., & Matin, L. (1990). The influence of saccade length on the saccadic suppression of displacement detection. Perception and Psychophysics, 48, 453–458.CrossRefPubMedGoogle Scholar
  82. Lisberger, S. G., Morris, E. J., & Tychsen, L. (1987). Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annual Review of Neuroscience, 10, 97–129.CrossRefPubMedGoogle Scholar
  83. Lopez, C., & Blanke, O. (2011). The thalamocortical vestibular system in animals and humans. Brain Research Reviews, 67(1–2), 119–146.CrossRefPubMedGoogle Scholar
  84. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Mack, A., & Herman, E. (1973). Position constancy during pursuit eye movements: An investigation of the Filehne illusion. Quarterly Journal of Experimental Psychology, 25, 71–84.Google Scholar
  86. Matin, L., & Pearce, D. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science, 148(3676), 1485–1488.CrossRefPubMedGoogle Scholar
  87. McLaughlin, S. C. (1967). Parametric adjustment in saccadic eye movements. Perception and Psychophysics, 2, 359–362.CrossRefGoogle Scholar
  88. Melcher, D., & Kowler, E. (2001). Visual scene memory and the guidance of saccadic eye movements. Vision Research, 41(2001), 3597–3611.CrossRefPubMedGoogle Scholar
  89. Melmoth, D. R., Kukkonen, H. T., Mäkelä, P. K., & Rovamo, J. M. (2000). The effect of contrast and size scaling on face perception in foveal and extrafoveal vision. Investigative Ophthalmology & Visual Science, 41(9), 2811–2819.Google Scholar
  90. Merriam, E. P., Genovese, C. R., & Colby, C. L. (2007). Remapping in human visual cortex. Journal of Neurophysiology, 97, 1738–1755.CrossRefPubMedGoogle Scholar
  91. Morgan, M. J., & Ward, R. (1980). Conditions for motion flow in dynamic visual noise. Vision Research, 20(5), 431–435.CrossRefPubMedGoogle Scholar
  92. Morrone, M. C. (2014). Interactions between eye movements and vision: Perception during saccades. In J. S. Werner & L. M. Chalupa (Eds.), The new visual neurosciences (pp. 947–962). Cambridge, MA: MIT Press.Google Scholar
  93. Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. Journal of Neuroscience, 17(20), 7941–7953.CrossRefPubMedGoogle Scholar
  94. Müller, R., & Greenlee, M. W. (1994). Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings. Vision Research, 34(16), 2071–2092.CrossRefPubMedGoogle Scholar
  95. Naka, K. I., & Rushton, W. A. (1966). S-potentials from colour units in the retina of fish (Cyprinidae). Journal of Physiology, 185(3), 536–555.CrossRefPubMedGoogle Scholar
  96. Nakayama, K. (1985). Biological image motion processing: A review. Vision Research, 25, 625–660.CrossRefPubMedGoogle Scholar
  97. Newsome, W. T., Britten, K. H., Salzman, C. D., & Movshon, J. A. (1990). Neuronal mechanisms of motion perception. Cold Spring Harbor Symposia on Quantitative Biology, 55, 697–705.CrossRefPubMedGoogle Scholar
  98. Noto, C. T., Watanabe, S., & Fuchs, A. F. (1999). Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. Journal of Neurophysiology, 81(6), 2798–2813.CrossRefPubMedGoogle Scholar
  99. Ohlendorf, S., Sprenger, A., Speck, O., Glauche, V., Haller, S., & Kimmig, H. (2010). Visual motion, eye motion, and relative motion: A parametric fMRI study of functional specializations of smooth pursuit eye movement network areas. Journal of Vision, 10(14):21, 1–15.Google Scholar
  100. Ohlendorf, S., Sprenger, A., Speck, O., Haller, S., & Kimmig, H. (2008). Optic flow stimuli in and near the visual field centre: A group fMRI study of motion sensitive regions. PLoS ONE, 3, e4043.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ordy, J. M., Massopust, L. C., & Wolin, L. R. (1962). Postnatal development of the retina, electroretinogram, and acuity in the Rhesus monkey. Experimental Neurology, 5, 364–382.CrossRefPubMedGoogle Scholar
  102. Østerberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica Kbh, 61, 1–102.Google Scholar
  103. Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107.CrossRefPubMedGoogle Scholar
  104. Pelisson, D., Alahyane, N., Panouilleres, M. P., & Tilikete, C. (2010). Sensorimotor adaptation of saccadic eye movements. Neuroscience and Biobehavioral Reviews, 34(8), 1103–1120.Google Scholar
  105. Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition. Current Opinion in Neurobiology, 18(4), 445–451.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Perry, R. J., & Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention. Brain, 123(11), 2273–2288.Google Scholar
  107. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., & Agid, Y. (1991). Cortical control of memory-guided saccades in man. Experimental Brain Research, 83, 607–617.CrossRefPubMedGoogle Scholar
  108. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.CrossRefPubMedGoogle Scholar
  109. Quessy, S., Quinet, J., & Freedman, E. G. (2010). The locus of motor activity in the superior colliculus of the rhesus monkey is unaltered during saccadic adaptation. Journal of Neuroscience, 30, 14235–14244.CrossRefPubMedGoogle Scholar
  110. Raabe, M., Fischer, V., Bernhardt, D., & Greenlee, M. W. (2013). Neural correlates of spatial working memory load in a delayed match-to-sample saccade task. NeuroImage, 71, 84–91.CrossRefPubMedGoogle Scholar
  111. Rashbass, C. (1961). The relationship between saccadic and smooth tracking eye movements. Journal of Physiology, 159, 326–338.CrossRefPubMedGoogle Scholar
  112. Rentschler, I., & Treutwein, B. (1985). Loss of spatial phase relationships in extrafoveal vision. Nature, 313, 308–310.CrossRefPubMedGoogle Scholar
  113. Reppas, J. B., Usrey, W. M., & Reid, R. C. (2002). Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron, 35(5), 961–974.CrossRefPubMedGoogle Scholar
  114. Reuter-Lorenz, P. A., Hughes, H. C., & Fendrich, R. (1991). The reduction of saccadic latency by prior offset of the fixation point: An analysis of the gap effect. Perception and Psychophysics, 49(2), 167–175.CrossRefPubMedGoogle Scholar
  115. Richards, W. (1969). Saccadic suppression. Journal of the Optical Society of America, 59, 617–623.CrossRefPubMedGoogle Scholar
  116. Riggs, L. A., Armington, J. C., & Ratliff, F. (1954). Motions of the retinal image during fixation. Journal of the Optical Society of America, 44, 315–321.CrossRefPubMedGoogle Scholar
  117. Riggs, L. A., & Schick, A. M. L. (1968). Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens. Vision Research, 8, 159–169.CrossRefPubMedGoogle Scholar
  118. Ross, J., Morrone, M. C., Goldberg, M. E., & Burr, D. C. (2001). Changes in visual perception at the time of saccades. Trends in Neurosciences, 24(2), 113–121.CrossRefPubMedGoogle Scholar
  119. Rovamo, J., Virsu, V., & Nätänen, R. (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature, 271, 54–56.CrossRefPubMedGoogle Scholar
  120. Schlag, J., & Schlag-Rey, M. (1995). Illusory localization of stimuli flashed in the dark before saccades. Vision Research, 35(16), 2347–2357.CrossRefPubMedGoogle Scholar
  121. Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11(5), 9.  https://doi.org/10.1167/11.5.9.CrossRefPubMedGoogle Scholar
  122. Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207–214.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Smith, A. T., Greenlee, M. W., Singh, K. D., Kraemer, F. M., & Hennig, J. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18(10), 3816–3830.CrossRefPubMedGoogle Scholar
  124. Smith, A. T., Singh, K. D., & Greenlee, M. W. (2000). Attentional suppression of activity in the human visual cortex. NeuroReport, 11(2), 271–277.CrossRefPubMedGoogle Scholar
  125. Smith, A. T., Williams, A. L., & Singh, K. D. (2004). Negative BOLD in the visual cortex: Evidence against blood stealing. Human Brain Mapping, 21(4), 213–220.CrossRefPubMedGoogle Scholar
  126. Sneve, M. H., Alnaes, D., Endestad, T., Greenlee, M. W., & Magnussen, S. (2012). Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. NeuroImage, 63(1), 166–178.CrossRefPubMedGoogle Scholar
  127. Sommer, M. A., & Wurtz, R. H. (2002). A pathway in primate brain for internal monitoring of movements. Science (New York, NY), 296(5572), 1480–1482.CrossRefGoogle Scholar
  128. Spering, M., Kerzel, D., Braun, D. I., Hawken, M. J., & Gegenfurtner, K. R. (2005). Effects of contrast on smooth pursuit eye movements. Journal of Vision, 5(5), 455–465.CrossRefPubMedGoogle Scholar
  129. Spering, M., Pomplun, M., & Carrasco, M. (2011). Tracking without perceiving: A dissociation between eye movements and motion perception. Psychological Science, 22(2), 216–225.CrossRefPubMedGoogle Scholar
  130. Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43(6), 482–489.CrossRefPubMedGoogle Scholar
  131. Stark, L., Kong, R., Schwartz, S., Hendry, D., & Bridgeman, B. (1976) Saccadic suppression of image displacement. Vision Research, 16, 1185–1187.Google Scholar
  132. Steenrod, S. C., Phillips, M. H., & Goldberg, M. E. (2013). The lateral intraparietal area codes the location of saccade targets and not the dimension of the saccades that will be made to acquire them. Journal of Neurophysiology, 109(10), 2596–2605.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Steinbach, M. J. (1976). Pursuing the perceptual rather than the retinal stimulus. Vision Research, 16, 1371–1376.CrossRefPubMedGoogle Scholar
  134. Stiles, W. S. & Crawford, B. H. (1933) the luminous efficiency of the eye pupil at different points. Proceedings of the Royal Society of London. Series B, 112, 428–450.Google Scholar
  135. Stone, L. S., & Thompson, P. (1992). Human speed perception is contrast dependent. Vision Research, 32(8), 1535–1549.CrossRefPubMedGoogle Scholar
  136. Stone, L. S., Beutter, B. R., & Lorenceau, J. (2000). Visual motion integration for perception and pursuit. Perception, 29(7), 771–787.CrossRefPubMedGoogle Scholar
  137. Strasburger, H., Harvey, L. O., & Rentschler, I. (1991). Contrast thresholds for identification of numeric characters in direct and eccentric view. Perception and Psychophysics, 49, 495–508.CrossRefPubMedGoogle Scholar
  138. Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1999). Motion-responsive regions of the human brain. Experimental Brain Research, 127(4), 355–370.CrossRefPubMedGoogle Scholar
  139. Sylvester, R., Haynes, J. D., & Rees, G. (2005). Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Current Biology, 15, 37–41.CrossRefPubMedGoogle Scholar
  140. Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K. P. (2002). Neural mechanisms of saccadic suppression. Science, 295(5564), 2460–2462.CrossRefPubMedGoogle Scholar
  141. Thompson, P. (1983). Discrimination of moving gratings at and above detection threshold. Vision Research, 23, 1533–1538.CrossRefPubMedGoogle Scholar
  142. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754.CrossRefGoogle Scholar
  143. Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., et al. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4), 3215–3230.CrossRefPubMedGoogle Scholar
  144. Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 883–890.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Vallines, I., & Greenlee, M. W. (2006). Saccadic suppression of retinotopically localized blood oxygen level-dependent responses in human primary visual area V1. Journal of Neuroscience, 26(22), 5965–5969.CrossRefPubMedGoogle Scholar
  146. van Essen, D. C., & Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13, 1–10.CrossRefPubMedGoogle Scholar
  147. Volkmann, F. C., Schick, A. M., & Riggs, L. A. (1968). Time course of visual inhibition during voluntary saccades. Journal of the Optical Society of America, 58, 562–569.CrossRefPubMedGoogle Scholar
  148. von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Die Naturwissenschaften, 20, 464–476.Google Scholar
  149. Watamaniuk, S. N., & Heinen, S. J. (1999). Human smooth pursuit direction discrimination. Vision Research, 39(1), 59–70.CrossRefPubMedGoogle Scholar
  150. Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24(1), 55–62.CrossRefPubMedGoogle Scholar
  152. Wright, M. J., & Gurney, K. N. (1992). Lower threshold of motion for one and two dimensional patterns in central and peripheral vision. Vision Research, 32, 121–134.CrossRefPubMedGoogle Scholar
  153. Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274, 423–428.CrossRefPubMedGoogle Scholar
  154. Zuber, B. L., & Stark, L. (1966). Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurology, 16, 65–79.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Experimental PsychologyUniversity of RegensburgRegensburgGermany
  2. 2.Schwarzwald-Baar KlinikumUniversity of FreiburgFreiburgGermany

Personalised recommendations